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Abstract

In this paper, a real-time QRS beat classification system

devised based on a nonlinear trimmed moving averaging

filter is presented. Such a nonlinear system aims to

identify the abnormal beat of ventricular origin from the

normal one. The proposed beat classifier can function

in parallel with a real-time QRS detector, permitting the

tasks of beat detection and diagnosis to alternate with each

other. Algorithm performance was evaluated against the

ECG recordings selected from the MIT-BIH arrhythmia

database. Numerical results demonstrated that over 99.8%

beat identification rate can be achieved by the algorithm.

1. Introduction

It has been widely acknowledged that QRS detection

provides an important basis for heart rate (HR) computation

[1]. In fact, to obtain instantaneous HR estimates with its

applications to physiological monitoring or to heart rate

variability (HRV) assessments, an automated beat diagnosis

immediately after the beat detection might facilitate these

applications further. Although numerous techniques for

QRS detection have been developed previously, most of

them cannot automatically identify the beat types of the

detected QRS complexes. In this study, an automated beat

diagnostic algorithm devised based on a nonlinear system

is therefore developed. In conjunction with a real-time

QRS detector, the proposed beat classifier can be applied to

further identifying the abnormal beat of ventricular origin

from the normal one once a QRS complex is detected, thus

involving minimal human efforts for review of the detected

heart beats.

2. Methods

2.1. Trimmed moving average

A “generalized” moving averaging process can be

defined as

��� �������
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�������� (1)

where ������� ��� ������� ����� �"!
!
!#��� ���%$'&(� � � 	 is an$*)+� vector of input data at time � (where $ defines the

averaging interval), ��� ��� is the filter output, � denotes the

algebraic ordering transformation, and �,�-� .0/1.324!
!
!�.657� 	
is an $8)9� vector of weighting or filter coefficients.

The ordering transformation � is such that ��
������ is an

algebraically ordered version of
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ranked from the smallest to the largest. Also, in all cases of

averaging process considered � is constrained by

� �A�B!
!
!�� �C�,�D�FE (2)

Considering Eq. (1), it is important to realize that

while the linearity of the filtering operation is retained,

an averaging operation is applied to the nonlinearly

transformed input data. For convenience, suppose the

averaging interval $ is restricted to odd values. Then,

a number of special cases can be respectively defined as

follows.
1. The Moving Averaging Process: defined by setting

.6GH� �
$ � for I �%�F�KJ:�
E
E
EL�K$ . (3)

Note that this is the only case where the linearly smoothing

operation holds.

2. The Moving Median Process: defined by setting

.6GM�N�F� for I � 5PO�/2 ; (4)
�RQS� otherwise.

3. The Trimmed Moving Averaging Process: defined by

setting

.6GM�RQS� for I �D�F�
E
E
E
�UT (5)

and $V�WT�&?�F�
E
E
E �K$ ;

� �
$V�=J6T � otherwise.

These filter coefficients .FG ’s represent the application of a

moving averaging operation to the input data, but with theT largest and T smallest values from the input sequence

removed. It should be noted that while for TX�YQ the

trimmed moving averaging filter functions like a moving

averaging operation to the input data, for TZ� 5\[�/2 , it

is simply reduced to a median filter. That is, the trimmed

moving averaging filter can be viewed as a compromise

between the moving averaging and the median filters [2].
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Figure 1. The feature extraction part of the proposed QRS

beat diagnostic system.

2.2. Architecture of the beat classifier

We approach this beat classification problem via a

pattern recognition technique, including the tasks of

feature extraction and pattern classification. Details are

respectively described as follows.

2.2.1 Feature extraction

The feature extraction system is formed by a cascade of a

nonlinear highpass filter (NHPF) and a nonlinear lowpass

filter (NLPF), as depicted in Fig. 1. First, the NHPF is

constructed by a parallel combination of an ideal delayed

system and a trimmed moving average filter (TMAF). The

NHPF output �-,
� ��� is then determined by subtracting the

TMAF output from the delayed version of the input signal��� ��� , expressed as

�-,
� ��������� �;� $>&?�
J ���W�
	 ��
�������� (6)

where ��
������ and � have the same definitions as those

addressed in Eqs. (1) and (5), respectively. According to

the descriptions in previous section, the TMAF indicated

in the figure performs a moving averaging operation on the

sorted $ windowed ECG samples (from the smallest to the

largest) but with the T largest and smallest values removed,

permitting a nonlinearly lowpass filtering and thus allowing

the overall sub-system between the input signal ��� ��� and�-,
� ��� to function like an NHPF.

Generally speaking, the frequencies associated with a

premature ventricular contraction (PVC) should distribute

in a lower band than those associated with a normal

QRS waveform. Therefore, we may speculate that

with appropriate selections of TMAF parameters ( $ , T )

significant suppression of the P, T waves as well as the

abnormal beats, such as PVC’s, can be achieved while the

impulse-like waveforms, such as the normal QRS beats, are

further elevated.

As for the NLPF part, it is composed of a squaring

function followed by a moving window summation. From
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Figure 2. A schematic block diagram of the proposed beat

classifier and its connection to an existing QRS detector.

Fig. 1, the NLPF output is calculated from

12,
� �����43
[�/5

G'687 � 2, � �;� I ��� (7)

where 9 represents the summation interval and 1�,
� ��� is

referred to as the feature or characteristic waveform. In

general, determination of the value of 9 is dependent upon

the sampling rate of the original ECG signal. Empirically,9 �;:FQ is a typical choice when the ECG sampling rate is

200 Hz [3], [4].

2.2.2 Pattern classification

To perform the task of pattern classification, a

thresholding scheme employing an adaptive threshold is

applied to the characteristic waveform, 1�, � ��� , resulting from

a moving window summation of the squared NHPF output.

The threshold, denoted as ��<=, , is automatically adjusted by

��<>, �@?W);QSE A PEAK ,�&4B � �C?ED )4��<>,L� (8)

where PEAK , is the local maximum, which exceeds the

current value of ��<=, , newly detected in 1F,
� ��� and ?
represents the “forgetting factor,” restricted to the positive

fraction numbers (i.e.,
QHGI?JGV� ). From Eq. (8), we

may see that each new value of ��<=, is determined from the

running estimate of the characteristic signal peak as well as

the prior and current values of the threshold itself.

Fig. 2 gives a schematic block diagram illustrating how

the beat classifier works. It should be noted that the beat

classifier is devised to work in parallel with an existing

real-time QRS detector. That is, an ECG signal ��� ��� is

simultaneously inputted into both the QRS detector and the

beat classifier, as indicated in Fig. 2. The steps of beat

classification are itemized as follows.

1. In Fig. 2, K represents the binary indication of QRS

detection result. Initially, K =0. K is set to 1 once a QRS

complex is detected.

2. Since K directly connects to the enable (EN) of the

thresholding unit of the beat classifier, each time when a

QRS complex is detected the thresholding mechanism will

be enabled.
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Figure 3. A functional block diagram of the QRS detection with beat diagnosis system.

3. When the thresholding mechanism is initiated, it first

accepts the temporal location of the detected QRS complex,

denoted as � 7 . Note that here � 7 is selected as the peak

location of the original R wave. Suppose the processing

delay between the original ECG and its corresponding

characteristic wave 1F,
� ��� is zero, thus 1F,
� �87 � will be a local

maximum of 1F,
� ��� . Beat classification is then achieved

simply by applying the decision rule as

if 12,
� �87
��� ��<>,
	 Normal; (9)

if 12,
� �87
��� ��<>,
	 PVC.

4. The threshold value ��<=, is updated by Eq. (8) only if12,
� �87 ��� ��<>, .
5. K is reset to 0, until a new QRS detection occurs.

2.3. Combining the QRS detection with
beat diagnosis

Notice that since the beat classifier is designed to

jointly work with a QRS detector, the performance of

beat classification is thus unavoidably dependent upon

the QRS detection results. Therefore, it is essential that

a reliable QRS detector with a minimal error detection

rate be employed for the performance evaluation of the

proposed beat classifier. In this study, a moving average-

based real-time QRS detector [5], also developed in our

laboratory, was thus adopted for this purpose. Such an

overall functional block diagram is as shown in Fig. 3.

The adopted QRS detector (encompassed by the dot box)

is combined with the proposed beat classifier (encompassed

by the dash box) in the manner as manifested in Fig. 3. It

can be seen that both algorithms share with the same delay

element. Moreover, their individual thresholding systems

have been integrated into one, thus allowing a two-step

pattern classification. That is, each time the occurrence

of a QRS complex detection will be immediately followed

by a QRS diagnosis. A demonstrative example of such

a two-step classification is given in Fig. 4. In this

figure, the top panel shows a 25-s ECG data segment,

the middle and the bottom panels give its corresponding

characteristic waveforms 1�
3� ��� and 12,
� ��� resulting from the

feature extraction parts of the QRS detector and the beat

classifier, respectively, as indicated in Fig. 3. The two-step

classification is then performed as follows:
� Step 1. An adaptive threshold is applied to 1�
3� ��� for

detecting QRS complexes by the decision rule as [5]

if 1�
3� �����<��<�
�	 QRS complex; (10)

if 1�
3� �����<��<�
�	 None,

where ��<�
 denotes the adaptive threshold and is updated by

��<�
 ��� );QSE ��� PEAK 
 &4B � ��� D )4��<�
�� (11)

where PEAK 
 is defined exactly in the same way as PEAK ,
except that it is derived from 1�
3� ��� . Similarly, � represents

the “forgetting factor” for the QRS detection algorithm [5],

where Q G�� G � .
� Step 2. Once a QRS complex is detected and its temporal

location �87 is found, a secondary adaptive threshold,

adjusted by Eq. (8), will be applied to 1�,
� �87 � to perform

the beat classification simply using the decision rule as

formulated in Eq. (9).
As a result, setting ( $ , T )=(7,2) and ( � , ? )=(0.05,0.05)

it is revealed from Fig. 4 that while the 27 QRS complexes

in the ECG segment were all detected, the 22 normal and 5

PVC beats were also correctly diagnosed.

3. Performance evaluation

We adopted the MIT-BIH arrhythmia database to

evaluate the algorithm. Each ECG recording in the database

is thirty minutes in length with the sampling rate .�� =360

Hz. To reduce the number of computations, we here

resampled the original ECG data to an adequately lower rate

of 200 Hz.

Tests conducted using the ECG recordings consisting

of PVC and normal QRS beats drawn from the MIT-

BIH arrhythmia database produced overall classification
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Table 1. Performance of the nonlinear trimmed moving averaging-based QRS beat classifier in identifying the normal from

the PVC beats. Note that here the results remained the same as the values of both thresholding parameters ( � , ? ) were selected

as positive fraction numbers over a wide range, say from 0.01 to 0.5 or so.

Recording no. no. of total beats no. of normal QRS beats no. of PVC beats classification accuracy

100 2273/2273 2272/2272 1/1 100%
119 1987/1987 1543/1543 444/444 100%
123 1515/1518 1515/1515 0/3 99.8%
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Figure 4. Top: a 25-s raw ECG data segment; middle:1�
6� ��� corresponding to the raw ECG; bottom: 1F,
� ���
corresponding to the raw ECG. The QRS beat classification

results are also labeled on the ECG plot in top panel (x:

normal, � : PVC).

accuracy above 99.8% with ( $ , T )=(7,2), as listed in

Table 1. It should be noted that in the MIT-BIH arrhythmia

database there are only three ECG recordings (no.100,

no.119 and no.123) containing PVC beats. The numerical

results showed the proposed algorithm was very promising.

On the other hand, it should be pointed out the reason

that the algorithm could not identify all the three PVC’s

in recording no.123 was because the QRS detector adopted

here, unfortunately, had failed to detect each one of them at

the QRS detection stage first, thus there was no way for the

QRS classifier to perform the subsequent beat diagnosis.

4. Conclusion

In this paper, a nonlinear trimmed moving averaging-

based QRS beat diagnostic algorithm is introduced. The

novel algorithm can reliably function in parallel with a real-

time QRS detector, permitting the tasks of QRS detection

and beat diagnosis to alternate with each other. In addition,

no data preprocessing is required for the algorithm thus

allowing a simple realization of it. Moreover, numerical

results showed the algorithm performance was not critically

dependent upon the choices of ( � , ? ), implying a degree of

robustness over a wide range of noise contamination.
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