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Abstract 

This paper presents a novel real-time QRS detection 

algorithm designed based on a simple moving average 

filter. The proposed algorithm demands no redundant 

preprocessing step, thus allowing a simple architecture 

for its implementation as well as low computational cost. 

Algorithm performance was validated against a subset of 

the MIT-BIH Arrhythmia Database. Consequently, 

numerical results showed that the proposed algorithm 

correctly detected over 99.5% of the QRS complexes from 

the standard ECG database, implying it may be 

considered as a simple and reliable candidate of QRS 

detection algorithms. 

 

1. Introduction 

QRS detection serves as the fundamentals for a wide 

variety of automated cardiac signal analysis algorithms 

[1]. According to previous researches in literature, a 

number of algorithms have been developed to detect the 

QRS complex from the electrocardiogram (ECG) [1]-[7]. 

Since the shape of QRS complex is time varying, and is 

subject to physiological variations as well as to 

corruption due to noise [2], a reliable QRS detection 

algorithm is thus essentially demanded in many aspects 

of applications into the ECG analysis. 

Some existing QRS detection algorithms employ a 

specific QRS template [5]-[7], which might be considered 

the best way to prevent the QRS detection performance 

from being degraded by the undesired noise sources, 

including baseline drifts, artifacts due to electrode motion 

or power-line interference, and the waves with similar 

morphology to QRS complexes, such as P or T waves [3]. 

However, since the template technique involves intensive 

cross correlation-based similarity measurement between 

the QRS template and a number of windowed ECG 

signals, such a heavy computational burden somehow 

might undesirably restrict its use to quite a limited 

number of aspects [8]. In this paper, a simple and reliable 

moving averaging-based real-time QRS detection 

algorithm is proposed. The novel algorithm demands no 

extra digital filters for preprocessing step, permitting a 

reduction in the computational cost and simple realization. 
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Figure 1. A block diagram of the QRS detection system. 

 

2. Methodology 

Fig. 1 gives a schematic block diagram of the 

proposed QRS detection system. In general, the overall 

detection system is mainly composed of three processing 

stages: a moving average-based highpass filtering (HPF), 

a nonlinear lowpass filtering (LPF), and a decision-

making stage. The task of QRS detection is performed as 

follows. First, an ECG recording is processed by the 

linear HPF in order to accentuate the QRS complex, and 

meanwhile, to suppress the undesired waves of ECG, 

such as P or T waves, as well as the baseline wander. 

After that, in order to guarantee that the high-frequency, 

low-amplitude artifacts can be smoothed down to a 

certain level while the QRS feature can be well preserved, 

the linear HPF output is then processed by a full-wave 

rectification and nonlinear amplification followed by a 

sliding-window summation, thus resulting in an 

envelope-like feature waveform. All the operations 

addressed above can be attributed to a nonlinear LPF 

process. Finally, an adaptive threshold is applied to the 

feature waveform to perform the task of decision-making 

for completing a QRS complex detection. Details are 

presented in the following subsections. 

 

2.1.  Linear High-Pass Filtering Stage 

At this stage, a linear filtering system is composed of 

an M-point moving average filter (MAF) and an ideal 

delayed system with a group delay of (M+1)/2 samples 

with both processing elements connected in a parallel 

form, as indicated in Fig. 2. For convenience, we restrict 

M to odd values. The MAF output is then subtracted, 

point-by-point, from the delayed input sample so the 

entire system becomes an FIR HPF with linear phase. 
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Figure 2. The architecture of the HPF 
 

Observing Fig. 2, first the input-output relation of a 

causal MAF can be characterized as 
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where x[n] represents the input data and M is the filter 

length. Meanwhile, it can be seen from Fig. 2 that the 

input signal x[n] is also simultaneously passed through an 

ideal delayed system with a group delay of (M+1)/2 

samples, resulting in 
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According to Fig. 2, the overall system output y[n] is 

determined simply by subtracting y1[n] from y2[n], that is, 
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Eq. (3) then algebraically results in 
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(4) 
 

Note that Eq. (4) is valid only if the filter length M is 

restricted to odd values. As a result, the overall system 

depicted in Fig. 2 becomes a type I FIR HPF with linear 

phase. In fact, for the purpose of a linear phase HPF 

realization, M is not allowed to be even values. This is 

because even values of M will result in a type II linear 

phase FIR filter and it is highly unsatisfactory [9], due to 

the zero of H(z) that is forced by the linear phase 

constraint to be z = – 1, i.e., の = ヾ, indicating there 

always exists a zero at the highest frequency and thus not 

suitable for linear phase HPF design. 

In general, the HPF stage employed here is intended to 

emphasize the QRS complex while suppressing the lower 

frequency noise sources of an ECG signal such as P or T 

waves, as well as the baseline wander. Therefore, 

selection of M is also an important issue. Different values 

of M will result in different frequency responses of 

 
 

Figure 3. Frequency responses of the MAF’s with various 

filter lengths (solid: 3-point MA, dash: 5-point MA, dot: 

7-point MA, dash-dot: 9-point MA) 

 

the HPF, as manifested in Fig. 3, and consequently might 

lead to different QRS detection performances. 

Considering the relative power spectra of QRS complex 

and P-T waves, the energy associated with the former 

mainly concentrates over approximately 5–15 Hz while a 

majority of energy associated with the latter or baseline 

wander typically distributes over the frequencies less than 

5 Hz. Observing Fig. 3 it can be seen that a smaller M 

(say, M=3) might not adequately emphasize the QRS 

complex in the ECG signal, in comparison with other 

cases. On the other hand, the low frequency noise sources 

such as P or T waves will be undesirably enhanced if M is 

too big (say, M=9). In this study, we therefore suggest an 

appropriate selection of M value can be M=5 or 7. 

 

2.2.  Nonlinear Low-Pass Filtering Stage 
The output of the HPF is further inputted into a 

nonlinear LPF constructed by a cascade of a simple 

point-by-point squaring operation and a moving window 

integration or summation system, as depicted in Fig. 4. 
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Figure 4. The component of nonlinear LPF 

 
As mentioned earlier in Section 2, the nonlinear LPF 

can be alternatively viewed as a nonlinear envelope 

detector, since it producing envelope-like feature 

waveforms. Moreover, the width of the moving 

summation window is also important. Generally speaking, 

the width should be appropriately selected so the 

summation waveform will neither result from a merge of 

the QRS and T waves together nor be a number of peaks 
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produced by a single QRS complex. In fact, this width 

should be determined by taking the sampling rate of the 

original ECG signal into consideration. A previous study 

regarding this issue suggested that, empirically, an 

appropriate choice of this summation interval could be 30 

samples wide as the ECG sampling rate is 200 Hz, 

corresponding to 150 ms in real-time [3], [10]. 

Consequently, with appropriate choice of M the peak 

level of the moving window summation of the squared 

linear HPF output corresponding to a QRS complex 

appeared to be significantly enhanced while those 

corresponding to the undesired noise peaks, such as the P 

and T waves were relatively attenuated, as illustrated in 

the lower panel of Fig. 5. In fact, observations gathered 

from the above allow us to devise a simple scheme of 

thresholding for the final decision-making stage. 

 

2.3.  Decision-Making Stage 
Here, an adaptive threshold is incorporated into the 

scheme designed for decision-making and is updated by 
 

* + ThresholdPEAKThreshold ·/-··? cic 1      (5) 

 

where PEAK is the local maximum newly detected in the 

feature waveform and 映 is referred to as the “forgetting 

factor,” restricted to the positive fraction numbers, that is, 

0Ψ映Ψ1. According to Eq. (5) it can be seen that each 

new value of the threshold is determined from the 

running estimate of the feature signal peak as well as the 

prior and current values of the threshold itself. 栄 is a 

weighting factor for determining the contribution of peak 

values to threshold adjustment. Empirically, the values of 

栄 can be 0.15 or 0.2. A QRS complex is said to be 

detected, only if the peak level of the feature signal 

exceeds the threshold. The value of the threshold is then 

updated each time when a new QRS complex is detected. 

A demonstrative example of the QRS detection addressed 

above is also given in Fig. 5. 

 

3. Results 

The novel algorithm was tested and validated against a 

subset of the MIT-BIH Arrhythmia Database. The 

optimal numerical experimental results for the subset of 

this standard database are summarized in Table 1. We 

may see from the table that the proposed algorithm 

produced 113 false positives (FP’s) and 160 false 

negatives (FN’s), resulting in a total correct detection rate 

over 99.5%. Note that here the forgetting factor 映 was 

not restricted to a certain fixed value (say, 0.05). Instead, 

according to our numerical experiments 映 can be chosen 

over a certain range approximately from 0.1 to 0.01. 

Moreover, it was also found that the error detection rates 

were all less than 1% with M = 3, 5, 7. Although the 

results obtained from some recordings were not as good  

 
 

Figure 5. The upper plot is the original ECG signal, and 

the symbol “ち” indicates the detected QRS complex. The 

lower plot gives the feature signal obtained after the 

nonlinear LPF process, and the symbol “,” indicates the 

adaptive threshold value. 

 

Table 1. Results of performance evaluation for the 

proposed real-time QRS detection algorithm with M=5, 

映=0.05 栄=0.15 

Tape 
(No.) 

Total 
(No. Beats)

FP 
(Beats)

FN 
(Beats) 

Failed 

Detection 
(Beats) 

Failed 

Detection
(%) 

100 2273 1 0 1 0.04 

101 1865 7 3 10 0.54 

103 2084 0 0 0 0.00 

109 2532 7 24 31 1.22 

113 1795 0 0 0 0.00 

114 1879 13 4 17 0.90 

115 1953 0 0 0 0.00 

116 2412 5 20 25 1.04 

117 1535 3 2 5 0.33 

119 1987 0 0 0 0.00 

122 2476 0 0 0 0.00 

123 1518 2 3 5 0.33 

124 1619 1 0 1 0.06 

201 1963 2 13 15 0.76 

202 2136 8 7 15 0.70 

205 2656 1 9 10 0.38 

209 3004 28 8 36 1.20 

213 3251 0 26 26 0.80 

219 2154 0 3 3 0.14 

220 2048 0 0 0 0.00 

221 2427 9 19 28 1.15 

222 2483 16 8 24 0.97 

230 2256 8 0 8 0.35 

231 1571 0 6 6 0.38 

234 2753 2 5 7 0.25 

25 patients 54630 113 160 273 0.46 
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as those from others, possibly due to severe noise 

contaminations (particularly the sudden change of the 

signal quality, for example), all the results of 

performance evaluation presented above still manifested 

a degree of flexibility and robustness for the proposed 

algorithm. 

 

4. Conclusion 

In this paper, a real-time moving averaging-based 

QRS detection algorithm is introduced. The novel 

algorithm can reliably detect QRS complex. According to 

our study, it appeared while achieving a pretty high QRS 

detection rate, the proposed algorithm requires no 

redundant preprocessing filters thus permitting relative 

fewer calculations, in comparison with most existing 

QRS detection algorithms. In addition, it was also found 

from our study that there existed a degree of flexibility 

for parameter value selection as well as of robustness 

over a wide range of noise contamination. 
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