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Abstract

A system for electrocardiogram (ECG) based
sleep staging in subjects with sleep-disordered
breathing is described. Three sleep states are
defined: wakefulness(W), REM sleep(R) and non-
REM sleep. Features investigated include RR
interval, RR standard deviation, RR spectra,
respiratory frequency, RR interval differences, and
an ECG-derived respiratory signal. A subject
specific quadratic discriminant classifier was
trained and tested, and yielded an estimated
classification accuracy of 71% (Cohen’s k value of
0.37). When a similar subject-dependent classifier
was trained and tested, the estimated classification
accuracy dropped to 61% (x=0.12). For
comparison, an electroencephalogram (EEG) based
classifier yielded a subject-specific accuracy of 76%
(x=0.51), and subject-independent accuracy of
75% (k=0.43), indicating that EEG features are
robust across subjects. We conclude that the ECG
signal provides moderate sleep-staging accuracy,
but features exhibit significant subject dependence

1. Introduction

In recent work, a system has been presented for using
the electrocardiogram (ECG) in assessment for the
presence of sleep-disordered breathing (SDB) [1].
However, a limitation of this system is that it provides no
knowledge about sleep state to the clinician. Accordingly,
we have conducted a study to see if the ECG alone can
provide some degree of sleep staging.

At present, sleep staging is carried out as part of the
polysomnogram scoring process. Polysomnography
routinely records and analyzes electroencephalograms
(EEG), electromyograms (EMG), -electroocculograms
(EOG), electrocardiogram (ECG), pulse oximetry and
several measures of breathing. Following acquisition of
the physiological signals, the subject’s sleep is scored in
blocks of 30 s into one of six stages: Wake, REM, and
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Sleep Stages 1, 2, 3 and 4, using the Rechtschaffen and
Kales (R&K) standard [2]. Scoring is typically carried
out in two stages; an automated system performs an
initial classification, which is followed by manual scoring
to correct errors. However, since the R&K rules are
arbitrary, and subject to operator interpretation, even
highly experienced scorers have some degree of
variability (estimated k coefficient is 0.80 [3]).

Correlates of EEG-defined sleep stages can be
expected to be present in the ECG also, through
autonomic modulation of the heart. Indeed, previous
studies have shown that the ECG contains relevant
information about sleep stages [4-8]. Several ECG
derived features (powers in the VLF, LF and HF spectral
bands, and the LF/HF ratio) have been described which
allow discrimination between these stages. The aim of
this study was to use the ECG alone to classify sleep into
Wake (W), REM (R), or Non-REM Sleep (S) stages, and
hence augment the system described in [1] for detection
of SDB. Our methodology was as follows. Firstly, a
subject specific system is trained by randomly selecting
epochs from 20% of the night’s sleep with suitable
representation of the three defined classes. Features were
extracted from each epoch, and a classifier model was
trained to distinguish the three classes. The remaining
80% of the night’s sleep was used to test the system. The
purpose of this exercise was to illustrate the ability of the
ECG features to discriminate between stages W, R and S
on a subject dependent basis.

Secondly, a subject-independent system was
constructed using training epochs drawn from all
subjects. Its performance on a single subject’s records
was evaluated using a ‘jackknife’ paradigm (leave one
subject out of the training data). In both the subject-
specific and the subject-independent system the training
data was used to train a quadratic discriminant classifier.

Finally, to provide a benchmark by which to assess our
ECG-based automated system, we compared its
performance with an implementation of a standard EEG-
based automated sleep stager.

2. Database
All data was obtained from the Physionet MIT-BIH
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Polysomnograph Database [8]. The database contains
multiple channel recordings of subjects being evaluated
for OSA in Boston's Beth Israel Hospital Sleep
Laboratory. Sleep stage annotations and apnea events are
included. For the purposes of this study, these sleep stage
annotations were considered as “ground truth”. All
signals are sampled at 250Hz. The database contains 16
subjects, of which 15 were chosen for the study. All 16
subjects were male, aged 32 to 56 (mean age 43), with
weights ranging from 89 to 152 kg (mean weight 119 kg).

3. Feature extraction

In designing our ECG-based sleep stager, we extracted
features consistent with those suggested in the literature.
In an attempt to remove subject-dependence from the
features, we carried out a normalization step on the RR
interval series. For each subject, a normalized RR series
was calculated by dividing by the mean RR interval
(producing an RR sequence with a unity mean).
However, since we may want to calculate spectral
features in cycles/second as well as cycles/interval, we
retain both normalized and raw RR series.

RR-Interval Features: Spectral representations of the
RR interval series have been widely used previously [4].
Sleep is traditionally staged in 30-second epochs. Due to
the poor frequency resolution of a 30 s PSD estimate, we
calculated an RR-interval spectrum based on 5 epochs
centered on the epoch of interest. While this reduces the
time-localization of the sleep stage information, we
believe that this is offset by the increased spectral
resolution. To calculate the power spectral density
estimate, the data from the five epochs is zero-meaned,
windowed (using a Hanning window), and the square of
its Discrete Fourier Transform (DFT) is taken as a single
periodogram estimator. The x-ordinate of this estimate is
in cycles/interval, which can be converted to
cycles/second by dividing by the mean RR. From this
spectral estimate five features are calculated: normalized
VLF (power in the 0.01-0.05 Hz band), normalized LF
(power in the 0.05-0.15 Hz band), and normalized HF
(power in the 0.15-0.5 Hz band). Normalization is
achieved by dividing by the total power in the three
mentioned bands. From the spectrum, we also estimated
the mean respiratory frequency by finding the frequency
of maximum power in the HF band, and the power at this
frequency.

In addition to the RR spectral features, we also used a
range of temporal RR features for each 30s epoch. These
features were: the mean RR of the normalized RR, its
standard deviation, and the difference between the
longest and shortest RR interval in the epoch.

ECG Derived Respiratory Features: As an alternative
source of information about respiration, we also derived
an ECG-derived respiratory (EDR) signal. It was
extracted by estimating the “envelope” of the ECG
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signal, as it is modulated by the change in resistance
caused by the expansion and contraction of the chest
during breathing [1]. The resulting time-domain signal
was then normalized over the entire recording to have a
zero mean, and unit variance (since the amplitude of this
EDR modulation is highly subject and electrode-position
dependent).

As with the RR-intervals the VLF, LF, HF, respiratory
frequency, and power at the respiratory frequency are
estimated, using a five-epoch window, centered on the
epoch of interest. The mean and standard deviation of
each epoch’s EDR was also calculated.

4. Quadratic discriminant classifier

Following the feature extraction stage described
above, each epoch now has an associated set of 8 RR-
based and 7 EDR-based features. The tool used for
classification is a quadratic discriminant classifier, based
on Bayes’ rule. Gaussianity of the feature vector
distributions, and independence between successive
epochs is assumed. A quadratic discriminant classifier is
derived as follows. Let w; signify the ith class. In this
application there are three classes, S, W, and R. Let x
denote the feature vector corresponding to a certain
epoch. Using Bayes’ rule we wish to find the class i
which will maximize the posterior probability:

P(w)p(x|®,)
p(x)

P(e,]x) = M

Maximizing the LHS of Eq. (1) is equivalent to
maximizing its log. Therefore, assuming a normal
distribution for the feature vector, p(x | @, ) becomes:
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where X; is the covariance matrix of the ith class, and p;
is the mean vector of the ith class. Substituting Eq. (2)
into the natural log of Eq. (1), our problem is transformed
into finding the class i which maximizes the discriminant
value g;(x) for a given test feature vector x:
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The class with the highest discriminant value is chosen as
the assigned class for that feature vector. To construct the
quadratic discriminant classifier, therefore, we must
estimate the covariance matrix and mean for the features
corresponding to each class, and also the prior probability



of the class occurring.

S. Subject specific classification

Firstly, we used the selected features and the quadratic
discriminant classifier model to discriminate between the
three classes W, R, and S for a single subject’s recording.
To train the classifier (i.e.,, estimate class prior
probabilities, covariance matrices, and means) 20% of the
epochs for that night are randomly selected. Before the
training data is chosen the prior probabilities for each of
the three stages occurring are estimated using all 15
subjects. These probabilities are calculated as: P(W)=
0.29, P(R)= 0.07, P(S)= 0.64. The training data is chosen
in such a way that the ratios of each class are in the
proportion of the prior probabilities where possible.
However, if the covariance matrix is estimated using as
many (or less) observations than there are features, the
matrix will be singular, prohibiting the use of
discriminant analysis. In such cases the class is simply
eliminated from the training data. To test the system the
remaining 80% of the subject’s data is presented to the
classifier.

Table 1 gives the results of such a classification
scheme. Results are presented in two formats. The overall
accuracy is the percentage of correctly classified epochs
from the test set. Cohen’s kappa statistic x is also
presented. It represents a better measure of performance
than raw accuracy, since it takes account of agreements
that would have occurred by chance [15]. ktakes on
values between 0 and 1, with | indicating perfect inter-
system reliability, and 0 indicating no agreement above
that predicted by chance alone. A x value above 0.7 is
typically taken to indicate a high-degree of inter-system
reliability. The results shown below are a double average.
The accuracies and x obtained for each of the 15 subjects
are averaged to give mean accuracy and k. Each accuracy
and x is itself derived from an ensemble of ten classifier
runs, with differing selections of training data each time.
Using all 15 features described in Section 3, the 3-class
classifier obtains an average accuracy of 71% and a k of
0.36. Using the RR derived features gives an accuracy of
72% and a x of 0.37, while the set of EDR features give
an accuracy of 71% and a x of 0.36. The standard
deviations of the accuracy are also included in Table 1 to
show that the overall accuracy will vary significantly
from run to run, and subject to subject.

Table 1: Classification results for subject specific system

Features Mean Standard Mean Kappa
Accuracy Dev. statistics
All features 71% 11% 0.36
RR features 72% 11% 0.37
EDR features 71% 12% 0.36

6. Subject independent classification

To construct a subject independent classifier, features
from the 14 other subjects are pooled together to form the
training data for the classifier. This is repeated 15 times,
leaving one subject out of the training data each time.
The remaining subject is used to test the system.
Obtained accuracies and K are averaged for an overall
estimate of performance, with results shown in Table 2.

Table 2: Results for subject-independent system

Features Mean Standard Kappa
Accuracy Dev. statistics k
All features 53% 14% 0.15
RR features 61% 14% 0.12
EDR features 57% 15% 0.13

The accuracy achieved by the subject independent
system, using all features listed in Section 3, was 53%,
and the k¥ was 0.15. The RR derived features gave an
accuracy of 61% and a x of 0.12. Finally, the EDR
features attained an accuracy of 57% and a k¥ of 0.13. The
performance of the classifier on the subject independent
task was poor, and differed only slightly from chance.

7. EEG comparative results

To gain a perspective on the results listed in Sections 5
and 6, two identical systems were designed using spectral
and time domain features from the EEG in place of the
ECG features described in Section 3. These systems were
designed in accordance with standard approaches
outlined in the literature [9,10,11], which recommend
using EEG spectral features for sleep staging. The EEG
spectral features used are: average power in the delta (0.5
— 3 Hz), theta (3 — 7 Hz), alpha (7 — 13 Hz), beta (13 — 30
Hz), and spindle (12 — 14 Hz) frequency bands. The time
domain features are activity, complexity and mobility [9].

Table 3: Classification results for EEG features

System Mean Standard Kappa
Accuracy Dev. statistics «
Subject Specific 76% 10% 0.51
Subject Independent 75% 11% 0.43
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Using the same training and classifier paradigm as
outlined above, subject-specific and subject-independent
classifiers were designed and tested. In the subject-
specific classification task the eight EEG features
achieved an accuracy of 76% and a k of 0.51 using all
features. However, the subject independent system
performed almost as well, attaining an accuracy of 75%
and a mean k of 0.43, as summarised in Table 3.



8. Discussion and conclusions

Subject-specific and subject-independent simplified
ECG-based sleep staging systems have been designed
and compared to a standard EEG-based sleep staging
system. The ECG subject-specific system performs
slightly worse (72%, k=0.37) than its EEG counterpart
(76%, «=0.51). However, its performance suggests that
the ECG represents a valid physiological signal for
estimating sleep stage with a reasonable degree of
accuracy. To place the classification performance in
context, consider that optimum EEG-based systems
typically have performances in the 80-85% range [11-13]
(averaged over both normal and pathological
populations). Such systems are operating at accuracy
levels comparable to human experts.

However, in the transition to a subject-independent
system, the ECG based system is not successful. Unlike
the EEG-based system, where performance figures are
virtually unchanged, the ECG system performs little
better than chance. Heuristically, this appears to be
primarily due to the fact that the distribution of our
chosen ECG features exhibits a large intersubject
variability. At this point, it is unclear to us whether the
variations are caused by inadequate choice of
normalization strategy, or by real inter-subject
physiological variations. For example, it is plausible that
for different subjects who have epochs of sleep in which

obstructive events occur, different cardiodynamic
behavior will be observed, even if the epochs appear
similar in the EEG.

A small number of non-EEG based sleep staging
systems have been described in the literature. In the small
study described in [16], the authors achieved excellent
accuracy using measurements of RR intervals and
respiration in normal infants. However, infants have quite
different sleep patterns and cardio-respiratory variability
than adults, so it is hard to know how their approach will
generalize. In [17], body movement was used to achieve
accuracies of between 78% and 89% in the same
discrimination task as ours; however, they report their
results using a subject-specific classifier. We conclude
that the ECG signal does contain information related to
sleep stages, but that a robust subject-independent ECG-
based classifier has not yet been developed.
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