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Abstract

The proposed method is composed of two phases:

Segmentation phase: uses a bottom-up multi-scale analysis,

based mainly on taking the advantage of using the

morphological scale-space by decomposing the image into

a number of scales of different structure size. As a result

of the decomposition, the gray level appearance structures

adjacent to the endocardial border are located, and finally

an estimated boundary is obtained regardless of those

structures. Refinement phase: Asserts prior information

about local structure around defined points along the shape

boundary. Our approach is able to correctly locate and

classify the inner structures in 91% of the tested 220 MR

images from different cases (imaged on 1.5T whole body

scanner). The estimated boundary converges correctly

to the main endocardial border. In conclusion, this new

approach represents a step towards automatic left ventricle

segmentation

1. Introduction

Automated segmentation to find the endocardial boundary

of the left heart ventricle from magnetic resonance (MR)

images has shown to be a difficult task. One of the major

problems related to the detection of the boundary are the

shortcomings typical of discrete data, such as sampling

artifacts and noise, which may cause the shape boundaries

to be indistinct and disconnected. Furthermore, the gray-

level appearance of structures inside the ventricular cavities,

such as papillary muscles, are often indistinguishable from

structures of interest for diagnostic analysis, such as the

moving inner heart boundary. Thus, segmentation appears

error-prone and often incomplete.

2. Methods

2.1. Method overview

There exist a number of different approaches that

employ different models for the endocardial boundary

segmentation. But most of the applied techniques fail in

over passing the appearance structures inside the ventricular

cavities, which implies error in segmentation. We present

a method that combines a bottom-up approach, which

gives a good initialization position, since the approach

determines the inner cavity and over passes the inner

appearance structures inside it. With a high-level approach

in one framework, through building a statistical model that

describes the variability in border instantiation in terms of

prior distribution on deformations of a template.

Figure 1. Flowchart illustrating the the combination of

the knowledge-based model with a bottom-up model for the

endocardial border segmentation.

2.2. Morphology scale-space decomposition

A bottom-up model is defined, using morphological

scale-space decomposition based on multiscale spatial
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analysis. This method comprises a powerful tool which

presents many advantages: the preservation of scale-

space causality, the localization of sharp-edges, and the

reconstruction of the original image from the scale-space

decomposition [1]. In combination with descriptor scale,

which defined as the scale that maximizes the response

of the morphological filter through the scale-space at each

point. The gray level appearance structures adjacent to

the endocardial border are located, and finally an estimated

boundary is obtained regardless of those structures.

2.2.1 Morphological scale-space

Mathematical morphology is a nonlinear analysis of

signals, using structuring elements. Two dual operations,

erosion and dilation, are the most basic morphological

operators. Erosion is shrinking operation while dilation is

an expanding one. By combining dilation and erosion two

new operations opening and closing can be defined. The

Morphological band-pass filter is defined according to [2],

by the following formula:

for n ≥ 0:

Hn+1 = f

Bn = (Hn+1 ⊙ dn)

Hn = Hn+1 − Bn (1)

where ⊙ is either the opening or the closing operator, f

the given image.

The resulting Bn represent a morphological decomposition

of the image into bands of different structure sizes with

light and dark blobs (limited with structure size dn ). Hn

are intermediate high-pass filtered images. Equation (1)

shows a recursive algorithm that alternately high- and low-

pass filters the image starting with high-pass filtering at the

coarsest scales.

2.2.2 Closing and Opening descriptor scales

The Descriptor scale is defined as the scale that

maximizes the response of the band-pass morphological

filter at each point in the image. This scale gives constant

values in a region of constant width, using the definition

given by [2], the difference that we defined a descriptor

scale for each morphological scale-space obtained from

the opening-closing operators separately. According to the

equation:

SD = argSk

(
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2.2.3 Algorithms

The algorithm was achieved by linking the descriptor

scales, with the scale-space decomposition obtained from

the opening and closing morphological operators, in order

Figure 2. Decomposition of ROI with respect to structure

sizes, using the closing and opening morphology operators,

and obtaining the maximum response along the scale space.

to distinguish between the inner cavity and the inner gray-

level structures inside it, which facilitate the inner boundary

segmentation. The algorithm goes as follow:

1. Calculate the morphological band-pass filter based on

(1), using a disk as a flat structuring element of increasing

logarithmically, obtaining a close scale-space and an open

scale-space respectively.

2. Applying (2) for both close and open scale-space, two

descriptor scales are obtained.

3. Based on the evaluation of the opening-closing scale-

space decomposition and referring to the descriptor scales:

(a) Determine the inner region as follows:

(i) The scale that describes the inner region is selected,

according to the opening descriptor scale and refereing to

the opening scale-space decomposition.

(ii) Apply a region growing algorithm to detect the region

of interest:

- Calculate the center of mass of the scale.

- Select the brightness intensity in 8-connected neighbors

to represent the seed point for the region growing.

- Stopping criteria using a defined threshold value.

(b) Determine the inner appearance structures as follows:

(i) Using the closing descriptor scale and refereing to the

closing scale-space decomposition. The scale describing

the appearance structures is selected.

(ii) Applying gray level histogram with defined threshold,

on the selected scale, the appearance structures are located.

4. Combing the information obtained from both the inner

region and inner appearance structure procedures, estimated

endocardial boundary is obtained.

2.3. Appearance knowledge-based model

The contribution in this section is based on refining

the fitting of the estimated boundary, obtained by the

introduced model in the previous section, since the
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Figure 3. Final estimated boundary.

estimated boundary needs to be enhanced in some locations

to obtain the best fit of the boundary to the true endocardial

border. The main idea is similar to the searching method

proposed by Cootes [3] through the training set a statistical

model of the radial gray profiles, normal to the model

boundary through each defined control point is build, and

during search simply find the points which best match the

model.

2.3.1 Labelling the training set

For generating a training set, each boundary of the

training image is represented by a set of labelled points.

We apply a manual procedure for labelling the training set

guided by an expert knowledge database (figure 4).

2.3.2 Control points selection

From the generated set of labelled points a set of control

points are selected, which are separated by equal orientation

and located along a certain path using the approach as

follows:

1. Calculate the average center of mass for all labelled

boundary of the training images (in order to align the

labelled points of the training boundaries into a common

co-ordinate frame).

2. For each training image do:

(a) Take the average center of mass as the point of origin.

(b) Perform radial decomposition with 15 degree rotational

angle, along the labelled points.

(c) Select the intersection point as a control point (figure 4).

The vector describing the n control points of the boundary

in the training set is

x = (x1, y1, x2, y2, . . . , xn, yn)T (3)

2.3.3 Modelling gray appearance knowledge

We will discuss how we can build the statistical model

around each control point as described by Cootes. The

main idea is to gather the gray levels information in a

region around each control point throughout the training

set, concentrating on the gray profiles along perpendicular

line passing through the control point in the direction of the

selected origin (average center of mass).

Figure 4. Training image. Left image: labelled endocardial

border. Right image: control points selection with 15

degree difference in clockwise direction for the same

training image.

For every control point j in the image i of the training

set, we extract a gray level profile gij , of length n pixels,

centered around the control point. We do not use the actual

gray level profile but its normalized derivative, to reduce the

effect of global intensity changes.

The normalized derivative profile is given by

gnormj =
dgij

∑n−1

k=1
|dgijk|

(4)

Now, we calculate the mean of the normalized derivative

profiles of each control point throughout the training set,

and we get for control point j

gj =
1

N

N
∑

i=1

gnormij (5)

The covariance matrix of the normalized derivatives is

given by

Cgj =
1

N

N
∑

i=1

(gnormij − gj)(gnormij − gj)
T (6)

with this we obtain a statistical model for the gray levels

around each control point j represented by gj and Cgj

2.3.4 Optimizing using gray appearance knowledge

For a given example, the search process was initialized

using the estimated boundary, which obtained from

the morphological scale-space decomposition model, the

search algorithm is summarized as follows:

1. Compute the control points for the given estimated

boundary.

2. for each control point do:

(a) Sample a profile m pixels either side of the current

point .

(b) Compute the derivative and normalize of sub-profile gs.

(c) Evaluate the error and search the best sub-profile with

respect to gs according to the following equation.

f(gs) = (gs − gj)
T C−1

gj (gs − gj)) (7)
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3. Results and conclusion

3.1. Image acquisition and pre-processing

Images were acquired using a 1.5T whole body scanner

(Intera CV, Philips Medical Systems) with Master Gradients

(slew rate 150 T/m/s, amplitude 30 mT/m) and a 5-element

phased-array cardiac coil. Three short survey scans were

performed to define the position and true axis of the left

ventricle. Afterwards, wall motion was imaged during

breath holding in long and short-axis slices using a steady-

state free precession sequence, which provides an excellent

demarcation of the endocardium. Cardiac synchronization

was achieved by prospective gating. The cine images were

recorded with 23 heart phases (23 frames per heart cycle).

Each frame of 256x256 pixels with a slice thickness of

10mm. For each frame a region of interest was extracted

of size 95x95 pixels.

3.2. Experimental results and conclusion

Morphological scale-space decomposition was tested on

220 MR images from different cases. Which is able to

correctly locate and classify the inner structures in 91%

of the tested cases. Figure 5 demonstrates using the

appearance knowledge search, as the search progresses

more suitable adjustments are made. The final convergence

(the max control point iteration was 19 iterations) gives a

good match to the endocardial boundary. We can see how

the algorithm guides the control points in such away that

large movements are made for the control points which are

far from the best fit position, while small movements for the

control points which are near to the optimum fit.

Figure 5. The final result for the endocardial boundary

segmentation using the appearance knowledge search.

The results for the whole model were recorded and

compared based on the square error distance (point to point)

between the final best fitting given by proposed model

and the hand-drawn contour. Figure 6 shows the mean

errors with ±standard deviation for every control point.

The maximum control point error within the tested data

set was 5 pixels. In conclusion a new combined approach

to segmentation of the endocardial boundary of the left

ventricle from magnetic resonance images was reported.

The developed model gives a new strategy initialization

matching approach. It promises to facilitate fully automated

quantitative analysis of endocardial boundary in routinely

acquired clinical MR images.

Figure 6. The mean square error distance (y-axis) for each

control point (x-axis), with standard error.
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