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Abstract

This paper addresses the problem of accurate segmentation

of the endocardial contours of both ventricles and the

epicardium of the entire heart. It reports on an extension

of the Active Shape Model framework [1] making use of a

non-linear appearance model as in the Optimal Features

ASMs (OF-ASM) approach by van Ginneken et al. [2]

and incorporating a reduced set of differential Cartesian

invariant features as local image descriptors. The new

method is coined Invariant Optimal Features ASM (IOF-

ASM). Validation results on a vast cardiac MR data-

set have shown that the new approach outperforms the

original ASM (p < 0, 001) and that both optimal features

algorithms have barely the same performance, yielding

reliable segmentations.

1. Introduction

Following a routinely acquired MRI scan an enormous

amount of meaningful clinical data is potentially available.

Accurate segmentation of the cardiac chambers constitutes

a prerequisite for almost any quantitative diagnostic

procedure. Nevertheless, manual delineation is still

the most usual approach for quantification. Since the

usual geometry of the cardiac ventricles is known, it

seems natural to incorporate prior shape and/or texture

knowledge into the segmentation process. ASM is a flexible

methodology that has been used for the segmentation of a

wide range of applications, including medical imagery. In

the original approach of Cootes et al. [1] the statistical

model of the shape is derived from the covariance matrix

of a Point Distribution Model (PDM) while a set of local

Grey-Level Profiles (GLPs) are used to capture the local

grey-level variations observed at each landmark position of

the PDM. The shape model is projected onto a subspace

following a Principal Component Analysis (PCA) of the

PDM, and retaining only a number of desired modes

of variation. The fitting procedure is an alternation

of landmark displacement and model fitting in a multi-

resolution fashion. With respect to the appearance model,

ASMs models are based on a crucial assumption: the

local texture around the landmarks has to be consistent for

all the instances of the object. Nevertheless, in practice,

local grey-levels around the landmarks can vary widely and

pixel profiles around a textured object boundary are not

very different from those in other parts of the image. In

key:foo2, an extension to the original linear ASM approach

is introduced, using a non-linear grey-level appearance

model. The method was coined ASM with Optimal

Features (OF-ASM). A reduced set of optimal local image

features obtained by feature selection are fed into a k-

Nearest-Neighbor classifier (kNN) that decides whether a

given location is more likely to lie inside or outside the

object. This metric replaces the Mahalanobis distance of

the GLPs used in the linear ASM fitting stage. In this

paper we present an extension to the non-linear appearance

approach of the OF-ASMs, incorporating a reduced set of

differential invariant features as local image descriptors.

The new method is coined, Active Shape Models with

Invariant Optimal Features (IOF-ASM). In this way, the

method is invariant to Euclidean transformations given that

only cartesian differential Euclidean invariants (up to a

given order) are chosen as local image descriptors.

2. Theory

2.1. Linear ASM

Overview - In an ASM, the statistical model of the shape

is derived from the PDM of a set of landmarks points,

used to model the shape of an object and its variations.

The appearance model is built from a set of local GLPs

(normalized first order derivatives), used to describe the

local intensity variations at each landmark position. The

fitting procedure is an alternation of landmark displacement

and model fitting in a multi-resolution manner.

Shape Model - A set of n landmark points, is used to

describe the object geometry. These landmark points are

(manually) determined in a set of s training images. From

these collections of landmark points, a PDM is constructed

as follows. The coordinates of the landmark points are

concatenated to form a shape vector {x1, y1, ..., xn, yn}.

The shape vectors of all the training set are translated,
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rotated and scaled in order to align them and remove the

pose. The mean shape x̄ = 1
s

s∑

i=1

xi and the covariance

matrix S = 1
s−1

s∑

i=1

(xi − x̄)(xi − x̄)T are computed.

The eigenvectors corresponding to the t largest eigenvalues

λi of the covariance matrix are retained in the matrix

Φ = {|φ1|...|φn|}. A shape approximation is obtained

x ≈ x̄ + Φb where b is a vector of t elements given by

b = ΦT (x−x̄). When fitting the model to a set of points, the

values of b are constrained to lie within the range, ±β
√

λi

where β controls the flexibility of the model and is usually

between 2 and 3. A set of t eigenvalues is retained so as

to explain a certain proportion fv of the variance in the

training shapes, usually ranging from 90% to 99.5%. The

desired number of modes is given by the smallest t for

which
t∑

i=1

λi ≤ fv

n∑

i=1

λi.

Appearance Model�The typical image structure that

describes the texture around each landmark is obtained from

the GLPs : k pixels are sampled (using linear interpolation)

around each landmark, perpendicular to the contour. The

first derivative (finite differences approximation) of the

2k + 1 length vector is calculated and normalized. The

normalization is such that the sum of absolute values of

the elements in the derivative profile is one. Denoting

these normalized derivatives profiles as g1, ..., gs, the mean

profile ḡ and the covariance matrix Sg are computed for

each landmark. This allows for the computation of the

Mahalanobis distance f(gf ) = (gf − ḡ)T S−1
g (gf − ḡ)

between a new GLP gf and the GLPs of the appearance

model, given by their mean and covariance matrices. The

GLPs are constructed for a number Nσ of resolutions. The

finest resolution uses the original image and a step size of

1 pixel when sampling the profiles. Subsequent levels are

constructed by doubling the image scale and the step size.

Fitting�Each landmark is displaced along the direction

perpendicular to the contour to ns positions on either side,

evaluating a total of 2ns + 1 positions. The step size is

2(i−1) pixels for the ith resolution level. After moving all

landmarks, the shape model retrieves a plausible shape from

the displaced points, yielding an updated segmentation.

This is repeated Nmax times at each resolution, in a coarse-

to-fine fashion.

2.2.
OF�ASMNon�linearappearance model�The Mahalanobis

distance assumes a normal multivariate unimodal distribution

of GLPs but, in practice, they will exhibit any arbitrary

statistical distribution. In this approach, the landmark

points are moved to better locations along a profile

perpendicular to the object contour at each landmark

location; but this time, the best displacement will be the

one for which everything on one side of the profile is

believed to be outside the object, and viceversa. OF-

ASMs base this decision on optimal local image features

obtained by feature selection and a texture classifier (see

below). Images can be locally described by their Taylor

series expansion, provided the derivatives at the point of

expansion can be computed up to a given order. In

order to assure a well-posed derivative calculation of the

discontinuous intensity function, derivatives of images can

be computed by convolution with derivatives of Gaussians

at a particular scale σ. This set of derivatives were named

the ”local jet” [3]. Given a set of filtered images, features

for each location are extracted by taking the first two

moments (i.e. mean and std. dev.) of the histogram around

each location, using a Gaussian window function. The

size of this window function is characterized by a second

scale parameter α. The construction of local histograms,

extracted from a Gaussian aperture function, is called a

Locally Orderless Image [4]. In the OF-ASM approach,

for most of the applications in which was tested, the first

and second moments: m1, m2 (Nm = 2), all derivatives up

to second order: L, Lx, Ly , Lxx, Lyy , Lxy (NL = 6), with

Lm = ∂L
∂m

and Lmn = ∂2L
∂m∂n

, usually two to five inner

scales: (Nσ = 2−5), and a fixed relation between the inner

scale σ and the histogram extent α, (α = 2σ), are used.

Thus, the dimension of the feature vector is Nm×NL×Nσ .

For each landmark, a squared grid with an odd number of

points Ngrid × Ngrid around it, is defined. The spacing

is 2(i−1) pixels for the ith resolution level. Therefore, for

each landmark and for each resolution level, a feature vector

with Nm x NL x Nσ elements is sampled at Ngrid x Ngrid

points with decreasing inter-point spacing, from coarse to

fine.

Sequential Feature Selection (SFS)�SFS algorithms

attempt to select the best reduced-set of features that

optimize a criterion function from a large set of available

features. In general, the optimal SFS algorithm depends

on the application. A way of doing the SFS is as follows:

after a Sequential Feature Forward Selection (SFFS) stage,

at most fm features (for each landmark and resolution) are

retained. The selected group of features can be trimmed

by Sequential Feature Backward Selection (SFBS) if that

improves the performance.

Fitting�The feature vector at each position along the

profile is fed into the kNN classifier. Its output is either

1 (inside the object) or 0 (outside the object). A weighted

voting of Nw neighbors is used. The weight of each vote is

e−d2

, where d is the Euclidean distance to each neighbor

in the feature space. The objective function f(g) to be

minimized is the sum of absolute differences between the

expected probability and the predicted probability, for each

point along the profile f(g) =
−1∑

i=−k

gi +
k∑

0
(1 − gi) where
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the index along the profile g, oriented from the outside

to the inside of the object, runs from −k to +k. This

non-linear metric replaces the Mahalanobis distance of the

linear ASM approach.

2.3. IOF�ASM
The limitation of using the derivatives directly in the

feature vector of the OF-ASM approach is the lack

of invariance with respect to translation and rotation

(Euclidean transformations). Consequently, these operators

can only cope with textured boundaries with the same

orientations of those seen in the training set. Cartesian

Differential Invariants (CDIs) describe the differential

structure of an image independently of the chosen cartesian

coordinate system. Florack et al.[3] described their

construction from Gaussian differential operators and

their local image geometry independence to Euclidean

transformations. The method continues evaluating at each

location and for each resolution the first two moments

(Nm = 2) of the locally orderless histograms of extent

α (α = 2σ) for the feature images L, Lii (Lxx + Lyy),
LiLi (L2

x +L2
y), LiLijLj (L2

xLxx +2LxyLxLy +L2
yLyy),

LijLji (L2
xx + 2L2

xy + L2
yy) (NL = 5), at Nσ inner scales.

The dimension of the feature vector is, Nm x NL x Nσ .

Note that the CDIs still depend on the choice of the scale

parameter σ.

3. Experiments

Data Set and Gold Standard�The performance of

the algorithms was tested on a data set comprising a

total of 1356 routinely acquired short-axis MR images.

The gold standard segmentations were manually drawn

by an expert. The studies correspond to 95 subjects,

21 healthy and 74 patients suffering various common

cardiac pathologies (myocardium infarction, hypertrophic

obstructive cardiomyopathy, LV aneurysm, etc.). From

each patient, 5 phases and 3 slices were manually

segmented. The latter were selected from the base to

the mid-ventricle portion, assuring that the right ventricle

was present in all the slices. The models were built from

a training set including 21 subjects (8 healthy and 13

patients). The rest of the data set was used for validation.

The shape model PCA included 34 modes of variation

explaining 99.5 % of the total variance. The acquisition

parameters were: TR: 3.75 4ms, TE: 1.5 1.58 ms, FA:

45, slice thickness: 8-10 mm, slice size: 256 × 256 pixels,

resolution: 1.56× 1.56 mm and FOV: 400× 300 mm2, on

a General Electric MRI facility.

Model Parameters�The shape model includes three

closed contours, namely the endocardial left ventricle (LV

ENDO) and right ventricle (RV ENDO) borders, and

the epicardial border of the whole heart (HEART EPI).

Following common practice in clinical quantitative cardiac

MR analysis, endocardial contours were traced behind the

papillary muscles and trabeculae and the epicardial contour

along the inner border of the epicardial fat layer. Starting

from a reference point at the posterior junction of the LV

and RV, the three contours were equi-spatially sampled

defining a total of 74 landmarks (n). Table 1 shows the

values of each parameter for the three methods.

Parameter Explanation ASM OF IOF

n # of landmarks 74 74 74

s # of training images 315 315 315

fv explained variation 99% 99% 99%

2ns+1 sampled positions (model) 5 NA NA

NgridxNgrid squared grid size NA 5 x 5 5 x 5

Nm # of moments NA 2 2

Nσ # of resolutions 3 (1;2;4) 3(1;2;4) 3(1;2;4)

NL # of differential features NA 6 5

Nm x NL x Nσ feature vector dimension NA 48 40

fm max. # of features after SFS NA 5 5

Nmax iterations per resolution 2;4;8 2;4;8 2;4;8

2k+1 sampled positions (fitting) 11 11 11

Nw voting nearest neighbors NA 5 5

Table 1. Parameters used in the experiments.

Quantitative assessment indices�The utilized quantitative

assessment indices were (1) the areas enclosed by the three

contours expressed in cm2 and (2) the point-to-curve (P2C)

border positioning error (average signed, unsigned and

maximum), in mm. In all experiments the performance

when fitting the shape directly to the true landmarks was

also computed because it indicates an upper bound for the

tests.

4. Results

Table 2 summarizes the results of the experiments. Each

of the two optimal features methods was significantly better

(p < 0.001, paired t–test) than the linear ASM approach,

but there were no significant differences between them. A

good correlation was obtained between computerized and

gold standard measurements of LV ENDO, RV ENDO and

HEART EPI areas measures. See Fig. 1 (only the IOF-ASM

results are shown.). HEART EPI results are not shown but

are similar to RV ENDO.

5. Discussion and conclusion

Computing a local texture operator sampled around

a local area, can deal with the textured boundary

segmentation problem. Instead of assuming a Gaussian

intensity profile distribution, a non-parametrically estimation

is utilized which is important when having large variations

in the background and/or in the object. In this way the

inclusion of a non-linear appearance model in the ASM

structure allows to model any number of arbitrary texture

configurations for each landmark or shape sub-part. The

presented method enables the automatic segmentation of

routinely acquired 2D cardiac MR images taking advantage

of prior shape knowledge and new local descriptors. It
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LV ENDO Signed P2C Unsigned P2C Maximum

ASM -2.89±2.36 3.07±2.13 8.54±4.43

OF-ASM -0.79±2.61 2.01±1.85 6.06±3.43

IOF-ASM -0.32±2.48 1.80±1.74 5.89±3.12

Fit of shape model -1.21±0.39 1.22±0.35 3.08±0.65

RV ENDO unsigned P2C signed P2C Maximum

ASM 0.57±2.78 1.98±2.04 9.66±5.11

OF-ASM -0.01±1.66 1.14±1.21 6.12±3.11

IOF-ASM 0.31±1.87 1.20±1.47 6.26±3.56

Fit of shape model -1.15±0.27 1.15±0.25 3.42±0.67

HEART EPI unsigned P2C signed P2C Maximum

ASM -1.88±3.76 3.50±2.32 13.83±3.99

OF-ASM -0.01±2.34 1.49±1.80 7.76±3.37

IOF-ASM 0.48±2.48 1.52±2.01 7.73±3.52

Fit of shape model -1.21±0.29 1.21±0.28 3.35±0.60

Areas Error LV ENDO RV ENDO P2C HEART EPI

ASM 3.52±3.52 4.57±4.25 3.65±3.24

OF-ASM 2.05±2.29 2.24±2.76 2.53±3.30

IOF-ASM 2.10±2.16 2.55±2.81 2.97±3.81

Table 2. Mean ± SD of the signed, unsigned and maximum P2C errors

in mm and of the area calculation error in cm
2.

(a) (b)

Figure 1. Regression graph between computer and gold standard

measures. (a) LV ENDO. (b) RV ENDO.

consistently obtains high quality segmentations in spite

of the poor quality of some images and the amount of

shape variation induced by some diseases (specially for

RV ENDO and HEART EPI). The results indicate that the

two OF- approaches are clearly better than the original

ASM method, but in this image modality and type of slice

orientation, there was no significant difference between

them. Some typical segmentation results are shown in

Figure 2. The computational cost on a regular PC hardware

for both OF- methods (2-3 minutes) per slice constitutes

an issue to improve as ASMs are very fast (less than a

second). As opposed to previous studies, the performance

of the different methods was tested on a data set with an

enormous amount of images, from an ordinary cardiac MR

facility. Such a large validation demonstrates the value of

optimal features ASMs cardiac segmentation.
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