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Abstract 

Three different types of wavelets (Morlet, Bessel filter 

and Chirp) and four different types of autoregressive 

modelling techniques (Burg, Forward, Backward and 

Modified Covariance) are considered.  A straightforward 

algorithm is suggested for all wavelet calculations.  A 

modification is made to the standard autoregressive 

technique to reduce the dominance of certain peaks.  The 

heart sounds of a set of normal patients and on a set of 

patients diagnosed as having aortic stenosis are 

investigated.  After separating the sound into individual 

heart cycle and further separating into the four phases (S1, 

systolic, S2 and diastolic), the relative energy levels in 

different phases over a number of cycles are compared.   

Typical results are selected for individual cycles and show 

the benefit of the modified autoregressive approach. 

 

1.  Input data 

The aim is to seek a better visualisation of heart sound 

using modern digital signal processing techniques.  By 

recording the sound information on to a laptop computer 

both sound replay and graphical display can add to the 

understanding of various heart sound conditions. The value 

of such an approach [1] and the graphical display of results 

[2] have been seen as good aids to diagnosis. 

Data has been collected over a number of years from 

patients at the Brighton and Sussex University Hospital 

(85 patients in 1995/6, 25 in 2000/01 and a recent batch of 

15 in 2003) using a lab-built digital stethoscope and 

standard interface to a laptop. Analogue measurement used 

the HP21050A sensor for the early recordings and a good 

electret microphone for the recent set.  The bandwidth is 

limited to 10Hz to 700Hz using third and fourth order 

Chebyshev filters respectively. The signal is digitised with 

12-bit resolution at a relatively high sampling rate of 

4096Hz.  Simultaneous recording were taken of the 

patients’ ECG.  A bulky 486 PC and large interface box 

was used for the 1995/6 and 2000/1 recordings but has 

now been updated to a manageable laptop, making the 5 

mile trip to the local hospital easier.  All patients were seen 

by a resident hospital cardiologist prior to undergoing 

probing from university postgraduates.  In most cases there 

is supporting written documentation from the cardiologist 

and in some cases ultrasound scan information is available.  

Once recorded, the off-line process of analysis can 

begin.  Matlab  provides, at ones fingertips, a range of 

signal processing algorithms which can be adapted for this 

heart sound application.  Analysis begins by segmenting 

the input waveform into individual heart sound cycles.  

The R wave from the ECG signal is used as the cycle 

divider and as an indication of the approximate start of S1.  

Wavelet and AR techniques are best applied on a cycle-by-

cycle basis.  Further analysis requires the subdivision into 

the S1, systolic, S2 and diastolic phases.  After which an 

energy calculation can be made to assess the relative 

energy in each phase and in particular give a value to the 

level of severity of any systolic murmur. 

2. Wavelet analysis techniques  

The Morlet wavelet has been used in recent years by a 

number of researchers [3].  This is not an orthogonal 

wavelet as required by those who do compression and 

decompression, but is merely a means of looking at some 

of the time-frequency information of a signal.  Selecting a 

wavelet then becomes a process of seeing which wavelet 

suits the style of the signal to be investigated rather than 

being constrained by the compression process. 

The ‘wavelet manager’ in Matlab  is somewhat 

cumbersome but for a specific wavelet analysis it can be 

reduced to a few lines of code: 

alf = 5; ncyc = 8; ind = 1; fs = 4096; 
for af = fr 
 ub =ncyc*pi/alf; lb =-ub; np =round(fs*ncyc/af); 
 tw = linspace(lb,ub,np); 
 wval = exp(-(tw.^2)/2).*(cos(alf*tw) + ... 

i*sin(alf*tw)); 
 rxy = conv(y,fliplr(wval));   
 d = floor((length(rxy)-ly)/2); % offset dist 
 x = rxy(d+1:d+ly);         % centralise result 
 coef(ind,:) = abs(x)*af; 
 ind = ind + 1; 

end 

Table1 – Matlab  source code for wavelet analysis  
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The Morlet wavelet is a complex wavelet which can be 

achieved by either using the cos + i sin form or taking the 

Hilbert transform of either the wavelet or signal.  4 cycles 

either side of the centre give sufficient points for the 

wavelet to decay so that the convolution multiplication is 

not too long.  The algorithm convolves the data set y 

(length ly) with scaled versions of the wavelet to give a set 

of coefficients from which a contour plot can be drawn. 

The frequency range, fr, is usually logarithmic but can be 

linear.  Strictly speaking the vertical axis on a wavelet 

time-frequency plot is ‘scale’ and not ‘frequency’.  Since 

the Morlet wavelet has only a single constant frequency 

given by cos(alf*tw) the direct equivalent to frequency 

can be used rather than the inverted logarithmic axis given 

by ‘scale’.  

An alternative wavelet can be devised based on the 

impulse response of a band pass filter.  In general the 

impulse response is a set of m terms of the form:  

exp(al*t(m))'*(abs(res).*cos(be*t(m)-angle(res))) 

Despite the number of different frequency terms 

involved, the impression given is that the impulse transient 

response moves from a signal resonating at the upper cut-

off frequency to one at the lower cut-off frequency.  The 

set of Bessel filters give a relatively smooth transition 

between the limits of the cut-off frequencies. (Poles are 

approximately equi-distance from the jω axis in a straight 

line between the cut-off frequency limits).  Thus, for 

example, a 6th-order band pass filter, derived from a 3rd-

order Bessel low-pass prototype, centred on 60Hz with a Q 

of 2.1 has a 3dB bandwidth between 76 and 47 Hz.  The 

transient response shows a gradual move from a waveform 

at about 78Hz reducing after 3 cycles to 46Hz.  If in 

another case one chooses a Q of 1.13 (therefore bandwidth 

between 92 and 39Hz), the output transient goes between 

114 and 26Hz in about 2 cycles. Thus setting the Q factor 

establishes the range of ‘instantaneous’ frequency.  As 

with all filters, the narrower the bandwidth, the higher the 

Q, the more ringing there is in the transient response.  

Thus the second example takes longer to move from its 

78Hz to 46Hz.  The end result is a waveform which 

changes from high frequency to low with an approximately 

linear frequency sweep modified by an envelope based on 

the exponential terms  

A chirp wavelet, with a set frequency sweep, can be 

defined such that it is approximately equivalent to the 

Bessel wavelet.  Defining a chirp wavelet in frequency 

terms is not difficult.  Taking a sine wave at 80Hz and 

stretching it down, linearly, to 40Hz over a period of time 

forms the basis of the frequency content of the mother 

wavelet.  The amplitude, or envelope shaping, which 

allows rising from time zero to a gradual decaying after 

some arbitrary time, can more or less be of any shape.  A 

straightforward envelope can be generated from a damped 

second-order low-pass filter response with an exponential 

rise followed by an exponential fall,  exp(-25t) - exp(-20t) .   

The following code can be inserted suitably into the 

Morlet calculation: 

ifr = fmin + linspace(0,(fmax-fmin),np)/2; 
chp = sin(2*pi*tw.*ifr); 
env = exp(-1.25*af*tw) - exp(-1.55*af*tw); 
wval = env.*chp; 
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  Figure 1.  Morlet and Bessel      Figure 2.  Bessel and chirp 

The Bessel (dotted plot) and Chirp wavelets are not 

symmetrical and to compare with the Morlet they have 

been shifted in time to get the best match. 

3. Autoregressive analysis techniques 

Autoregressive modelling analysis techniques can 

usually be relied upon to give a better power spectral 

estimation then traditional FFT analysis, especially when 

the data set is fairly short.  The theoretical foundation for 

the techniques can be tested by setting up coeffic ients for a 

low-pass digital filter, calculating its impulse response, 

adding noise and then finding the best autoregressive 

approach to estimate the filter coefficients.  Hayes [5] 

gives Matlab  algorithms for Forward Covariance 

page310, Burg p319, Modified Covariance p324.  For 

assessing alternative techniques, his test process enables 

one to examine (i) spectral resolution, (ii) effects of added 

noise and (iii) effects of changing the order of the model 

filter.  Results show that both the Burg and Modified 

Covariance techniques easily outshine the Forward and 

Reverse Covariance approaches.  However both Burg and 

Modified Covariance although accurate in frequency 

resolution show a tendency for high peaks at the filter pole 

frequencies.  This peakiness occurs when either there is 

low noise or when a higher than needed order is selected.  

The problem is that high peaks can saturate the system and 

prevent the identification of other lower-amplitude 

resonances.  Since one does not know the noise level of 

any particular heart sound recording or anything about the 

nature of the resonances, it is difficult to select the 

appropriate order for the AR model.  The approach 

suggested here is that these peaks should be smoothed 

with, for example, a low pass filter.  This  means taking the 

unusual step of filtering the frequency spectrum.  The 

amount of filtering has been selected by trial and error, 

with the main test based on looking at the final time-
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frequency contour plot and making sure that no peaks are 

over flattened. 

  

0 0.1 0.2 0.3 0.4 0.5 0.6

-10

0

10

20

30

40

50

60

A
m

p
li

tu
d

e
, 
d

B

Frequency
0.285 0.29 0.295 0.3 0.305 0.31 0.315

25

30

35

40

45

50

55

60

initial model estimate

original filter response

estimate
filtered model

A
m

p
li

tu
d

e
, 
d

B

Frequency  
Figure 3.  Full/detailed spectrum before and after filtering  

 

Having started the idea of filtering the frequency 

spectrum, it can be continued if it is desired to emphasis a 

particular range of frequencies.  In our recordings, 

allowing signals down to 10Hz gives extra information 

below the normal audible range.  However heart sounds 

can get swamped by this low frequency content and if one 

wishes to emphasise murmurs then a gradual reduction of 

low frequency content is desirable.  Here an arctan 

envelope is applied to achieve further filtering. 

fo = 20; Q = 0.7;  

envt = atan2(fo/Q*fr,(fo*fo - fr.*fr))/pi; 

Time resolution is achieved by applying AR analysis to 

short sections of the waveform, analogous to the Short-

Time Fourier Transform.  The number of time windows 

taken within the heart cycle period affects the overall look 

of the combined contour plot.  Individual time windows 

can overlap each other so as to achieve a sliding window 

across the data set.  For this study, between 60 and 80 time 

windows were chosen with an overlap factor of between 

0.8 and 1.3.  An overlap of 1 indicates that the second time 

slot begins at the halfway point of the first slot, and thus 

the third begins at the end of the first.  Within the time 

window, with its relatively few number of data points, the 

model order can be low.  Model orders of 6 or 8 are quite 

sufficient to bring out the relevant features. 

4. The severity of a systolic murmur 

Applying the above techniques is done in one of two 

ways.  Firstly as means of comparing the relative strengths 

of the S1, S2 and murmur signals and secondly by looking 

at individual cycles to see what information the various 

techniques can yield. 

Initially the heart cycle must be segmented into the S1, 

systolic, S2 and diastolic phases.  This is not a trivial task 

to do in general.  In normal patients there is a clear 

distinction between the lub and dub of the heart sound. In 

the presence of a systolic murmur, such as generated by 

aortic stenosis, the boundaries between the end of S1 and 

the beginning of the murmur, and the end of the murmur 

and the beginning of S2 can become very obscure.  

Frequency differences can assist this segmentation task 

with S1 and S2 being in the 40 to 80Hz range and murmur 

being higher, 80 to 150Hz, but is not always the case.  

Although the fundamental resonances of S1 and S2 are at 

relatively low frequencies in the audible range, the lub-dub 

effect can be still hear in the 100 to 200Hz range.  An 

algorithm has been devised that looks for peaks of signal 

around the probable region where S1 and S2 occur i.e. 

75ms and 0.4s after the R wave.  The algorithm looks for 

minimums either side of the peaks within certain time 

limits. 
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Figure 4.  Single cycle segmented into S1 and S2 

 

To estimate the severity of a murmur, a comparison is 

made of the energy level in the systolic period relative to 

the energy in S1 and S2.  If there is no diastolic murmur 

then the signal level in the diastolic period is used to 

estimate the general noise level of the recording and 

subtracted from the other levels to eliminate the lower 

noise threshold. 

5. Results for individual cycles 

The first example is taken from cycle number 3 from 

patient AS12, chosen because there is a significant systolic 

murmur. 
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Figure 5.  Morlet wavelet analysis  
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Figure 6.  Modified Covariance analysis  
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Even in a black and white reproduction, the detail 

seems clearer using the autoregressive approach.  In a 

second example, taken from cycle 9 of patient AS7, the 

problem is that in the wavelet representation the dominant 

features of S1 and S2 hide the lesser features of the 

murmurs.  
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Figure 7.  Bessel wavelet analysis  
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Figure 8.  Burg analysis  

 

Although this is a different patient, the Bessel wavelet 

gives almost identical results to the Morlet wavelet 

approach and, again, a dominant S1 swamps the detail in 

the rest of the cycle.  The Burg analysis is very similar 

results to the Modified Covariance approach.   

A third example, from cycle 9 of patient AS89, gives a 

chirp wavelet analysis and corresponding Modified 

Covariance analysis  
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Figure 9.  Chirp wavelet analysis  
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Figure 10.  Modified Covariance analysis  

Again the Chirp wavelet is very similar to other wavelet 

analysis. Even Forward and Reverse Covariance 

techniques emphasise some of the additional features but 

show sporadic peaks compared with Burg and Modified 

Covariance. 

In these examples the individual cycles have been 

chosen so that the individual severity matches the average 

over some 25 to 35 cycles. 

6. Conclusions 

A conclusion drawn from the above suggests that there 

is little difference from a variety of different wavelets 

when applied to heart sounds, especially when the 

wavelets visually look closely matched.  There is also not 

much difference in the various autoregressive modelling 

techniques, with a slight preference towards the Modified 

Covariance and Burg approaches.  By filtering the 

frequency spectrum the traditional AR approach has been 

improved so that it yields greater detail than the well-

respected wavelet approach. 

 

Acknowledgements 

The author wishes to thank past and present 

postgraduates, Blanca Tovar-Corona and Hosam Mgdob, 

and Professor Richard Vincent for assisting in the 

collection of the patient data. 

References 

 [1] Tilkian AG, Conover MB, Understanding Heart Sounds and 

Murmurs with an introduction to Lung Sounds, 1984, 

Philadelphia: Saunders. 

[2] Lukarinen S, Noponen AL, Sikio K. Angerla A, A New 

Phonocardiographic Recording System, Computers in 
Cardiology 1997, Lund, IEEE Computer Society Press, vol 

24:117-120. 

[3] Tovar-Corona B, Hind MD, Torry JN, Vincent R, Effects of 

Respiration on Heart Sounds Using Time-Frequency 

Analysis, Computers in Cardiology 2001, Rotterdam, IEEE 
Computer Society Press, 2001: 457 

[4] Bentley PM, Grant PM, McDonnell JTE, Time-Frequency 

and Time-Scale techniques for the classification of native 

and prosthetic heart valve sounds, IEEE Trans. Biom. Eng. 

1998 vol 45(1):125-128. 
[5] Haynes MH, Statistical digital signal processing and 

modelling, John Wiley & Sons, 1996, ISBN 0-471 59431-

8:101-104. 

 

Address for correspondence. 
 

Dr John N Torry  

Department of Engineering and Design  

University of Sussex 

Falmer, Brighton 
BN1 9QT, UK 

E-mail address: j.n.torry@sussex.ac.uk 

660


