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Abstract

Action potential duration (APD) in the heart depends
on the timing of the stimuli from SA node and the
preceding diastolic interval (DI), the time it rested since
the previous excitation. Such effects can be described by
a random iterative map involving a heart rate dependent
restitution function [1]. In a steady state the stimuli form
a stationary random process and iterative maps converge
to stationary stochastic APD and DI sequences. We
derive analytical expressions for major stochastic
characteristics of such sequences (mean value, variance,
etc). The results reveal a remarkable role of the slope of
the restitution curve for the properties of the stationary
output sequences. Our tentative computer simulations of
the process corroborate our analytical results for
relatively small heart rate variability.

1. Introduction
The heart rhythm originates from an anatomically
separate part of the heart, Sino Atrial (SA) node, which
generates a sequence of electrical stimuli that can trigger
excitation/contraction waves propagating through the
heart. These excitation or Action Potential (AP) waves in
turn generate electric potentials on the body surface that
can be recorded as a local electrocardiogram (ECG). The
success or failure of the wave propagation through the
cardiac conduction system and/or the ventricles determine
the cardiac rhythm observed as the body surface potential
records. Thus, the cardiac conduction system and the
(massive) ventricles constitute “the prism” or “the
transformer” that transforms the original SA node rhythm
into the rhythm registered on the body surface by ECG.
The shape of each AP wave in cardiac tissue,
characterised primarily by the Action Potential Duration
(or APD, denoted by Tap), depends on the time the tissue
has rested since the end of previous excitation (Diastolic
Interval, or DI, denoted by Tp). The dependence
Tap=HTpy) is usually referred to as a restitution function
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or curve [1]. In reality, we always deal with sequences of
stimuli, APDs, and DIs, so one must write

T = r(Ty), where the superscript marks the cardiac

cycle’s number. Within one, say n“‘, cardiac cycle APD
and DI are related by the relation T, = T, + T} , where

T, is the n™ cardiac cycle length (CCL). The above two
relations can be combined in a single relation
equivalently expressed either in terms of APD as
T =r(T, —Ty), or, in terms of DI as

T3 =T, —r(Ty). For certainty, we shall deal only

n+l
with the latter form of the recurrent relation. In the simple
case when the stimuli are strictly periodic, with the period
T (a fixed rate pacemaker, T,=T, &=1,2,...), the recurrent
relation turms into an iterative map of the form:
T =T —r(Ty,). The behaviour of such non-linear

iterative maps has been extensively studied in general [2]
and in the context of restitution effects on the
development of cardiac rhythm [3]. One can readily see
that if the steady (periodic) state is reached the Tp, values
must satisfy the equation T = T - H(Tp;). The condition
that the iterative map sequence converge to the steady
state is |r'(Tp)|<1 [2,3]. When this condition is not met
some interesting rhythm patterns have been shown to
evolve [3,4].

In reality, due to heart rate variability a SA node
generates a stimulus sequence, which is not strictly
periodic, so the above mentioned considerations are not
strictly applicable. The input stimulus sequence can be
viewed as a signal from a “noisy metronome” with a
random spacing T, between the n™ and (n-1)* stimuli. In
the corresponding iterative map, Ty, =T, — r(T}),
the first term in the right hand side represents a random
component of the map, while the second, a deterministic
component. Behaviour of such nonlinear iterative maps
with random elements constitutes a broad area of study.
Below we shall tentatively present the necessary
corrections to the case with “no heart rate variability”.
Assuming the timing of each stimulus from SA node to
be statistically independent from the timings of all the
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previous stimuli and given statistical characteristics of
such an input sequence (the moments) we analytically
find major statistical characteristics (moments, auto-
correlation and cross-correlation coefficients) of the
output APD and DI sequences. The resulting formulas
reveal a remarkable, physiologically relevant fact that all
heart rate variability corrections involve a common factor
that “blows up” at the heart rate corresponding to the
marginal stability boundary for purely periodic iterations.
We also discuss the prolongation effects of heart rate
fluctuations on the average DI, which is also of
physiological interest. We shall also present some
illustrative computer simulations to illustrate our findings.

y A The formulation of the problem

In order to simplify the notation we shall denote by
Xo )i and z, the k ™ DI, APD and CCL, respectively. The
input sequence, {z;}, representing the “ticking of an

idealized SA node is assumed to be a strictly stationary
stochastic process, for which all time averages, such as

Z,z°,..., are given time independent constants, which

coincide with the corresponding ensemble averages, <z>,
<z*>, ... . A restitution function relating y and x., is
known [1] to depend also on the frequency of the
conditioning stimuli. In our case, this translates into a
dependence of the k™ APD on the mean CCL, % in
addition to the dependence on preceding DI, x.,.
Elharrar and Surawicz [1] found that the account of the
frequency dependence reduces to a simple rescaling so
that the restitution curve can be presented in the form

s(T) =

1 75 = ——(T: = T, T S
(1 AP o7 — 5(T)) p(Ty) r( Dl)
Here T = Z is the conditioning CCL and

5 7) = =1-Ae™ — Be™
@2 () et p(z) e T

where and a,b,4,B and o, are constants [1]. The function
8(z) yields the steady (periodic) state APD value, T'ar,

so that T — s(T) = Tw is the steady (periodic) state DI.
It is worth mentioning that Elharrar and Surawicz were
unable to present their result in an explicit form, similar
to expression (1), because of their use of acronyms
instead of regular algebraic notation. We shall use a
general restitution function r(z,z) for analytic analysis

and the one defined by Eq-s (1) and (2) for our computer
simulations.

The random map can thus be written in the form
3) I, =& —rZE )
The map is iterative since it uses a previous x-value as an
input it is also random because of the term z,. Stochastic
properties of iterations can be studied in terms of
fluctuations, which are defined as follows
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where the mean values are marked by the bar. According
to Eq. (4) all fluctuations, have zero mean values, i.e.

oz, = 0,8y, =0,8z, =0. 5)

Averaging the relation z; = x + ) and using Eq-s (4)
and (5) we obtain

Z=T+7, bz, =6z, +y,. (6)

Our analytical task is to find the first corrections to the

stationary case with nonrandom z = const and express the

stationary mean values, Z,y, the wvariances

bz, =z, —T,0y, =y, -7, 6z, = 2,

o; = (8z), o) = (6y)’,
characteristics of the output processes (e.g. auto-
correlation coefficients & (m)= 6z, 6z, , /o’) through
statistical characteristics of the input stimuli sequence,
{zx}. Note that auto-correlation coefficients of the input
sequence are given by

and other statistical

Lt =1,

m) = B, [0} =G =0 o

)

3. Analytical results

Let us write our random map (3) in terms of
fluctuations (4) in the form
T+0z, =Z + 62, —r(Z,T +6z,_)). (8)
Averaging both sides of this equation and using (4) yields
®
Expanding function » in this expression into Taylor’s
series up to the second order and using Eq. (5) we obtain
Z=7z-1(Z)-(1/2)r"(z T)?, (10)
where primes hereafter denote derivatives with respect to
the second argument and o is yet to be found. Eq. (8)
within the first order yields
bz, = bz, —r'(z,Z)bz,_,
Squaring both sides and averaging we have
oz} = 6z —2r'(3,3)0z,0z,_, +[r'E ) 6z, (12)
The cross-correlation term vanishes due to the assumed
statistical independence of z; of the timing of preceding
stimuli. Thus, we obtain an interesting relationship

0,2

I z
LR e S Ty
1= [r'(z,;ls)]2
which indicates that the standard deviation of DI has a
singularity when r’=], i.e. at the value of DI at which the
causal iterative map loses stability. Substituting o, from
Eq. (13) into (10) we finally find

T=7z-1(zT+6z,_,)

(1

(13)

(14)

[r'GD)]

which with the account of Eq. (6) can also be written as



1. %220’
21-[r'G3)

Relation (14) is a transcendental equation, which must be
solved for T at a given value of zZ. Equation (14) or (15)
expresses the first non-vanishing order correction to the
average APD for the presence of fluctuations. When the
CCL fluctuations, characterized by the value of o,, are
small, the last term is negligible and the stationary APD is
approximately given by the regular restitution function.
The last term represents the fluctuation correction to the
mean stationary value of APD.

One can make an interesting conclusion from Eq. (15).
The restitution function described by Eg-s (1) and (2) is a
concave function of T, which appears to be quite a
general property of restitution. Therefore, r"(z,7) <0
and Eg-s (14) and (15) indicate that the fluctuation
corrections to DI and APD are respectively positive and
negative. Thus, the apparent effect of fluctuations is that
they effectively prolong diastolic interval providing
cardiac muscle with more time to recover (at a given heart
rate). A metronome-like heart would have on the average
less recovery time during each cardiac cycle as compared
with the heart with nonzero heart rate variability.

Let us now determine how far back the DI value, x,
still feels the effect of an earlier DI fluctuation, xy.m.
Such an effect is given by the auto-correlation coefficient

dz. 0%,

k,(m) =—=

In order to find k,(m) we notice that the factor d,., in Eq.
(11) can expressed via a similar relation,
0z, = bz, —r'(z,T)bz, ,and this process can be
repeated m times to eventually yield in the first order

m—1 7
bz, = 6z, -y [r'(FT)| 6z, +[-r'GI)" bz,
j=1

(15) 7=rE7)+

(16)

Multiplying this relation by dx,.n, and averaging we have

m—1 b
6z,0z, _,, = 62,0z, , — > [r'(ZT)] bz,_;0%,_,,

s=1

+[-r'GI)]" (6z,_,) -

Due to statistical independence of the timing of the
stimuli, all averages in the right hand side, except the last
one, vanish and in accordance with (16) we obtain
(17 k(m)=[-r'(z, )
Quite similarly, one can find the cross-correlation
(18) 0z,0z,,, =20y, . =[-r'GZF) 7.

According to Eq-s (17) and (18) the “memory” of the
iterative process is again fully determined by the factor
r'(z,Z). When r'(z,Z) =1 the correlation between the
current value of DI and all preceding values of DI, and/or
CCL and/or APD does not change with the increase of
time spacing, m. This is quite a peculiar behavior. Under
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the same condition, r'(z,T) =1, the right hand sides of
Eq-s (13)(15) turn into infinity. Such a singular behavior
is a manifestation of some new qualitative effects beyond
the scope of the above expansion method. Studying such
effects theoretically would require a higher level theory
not limited by the expansion convergence conditions.

. Computer simulations

The behavior of a random iterative map at high
stimulation rate, in the vicinity of the point where
r'(z,7) =1, can be explored numerically. Another

category of effects for computer simulations is the cardiac
rhythm disturbances and formation of complex rhythms
arising from the stimuli that arrive during refractory
period [3,4] and thus generate no AP. In our notation this
corresponds to zy > yi.;.

We report below some tentative computer simulation
results obtained using a MATLABG6 program developed
for this purpose. At the first step the program generates a
randomized input stimuli sequence corresponding to
approximately one hour long stationary cardiac record.
At the second step, this input sequence is iterated in
accordance with Eq.(3) using the restitution function
given by Eg-s (1) and (2). At the next step statistical
characteristics of the output sequence are evaluated. The
final step consists in displaying the results.

The input sequence was obtained from a Gaussian
distribution with the mean value g and STD o, by
cutting off the portion of distribution below z=0.2 s. The
original Gaussian segment consisted of 4096 cardiac
cycles while the length of the cut off sequence varied
depending on the values of x and o. It always exceeded
2500 in our simulations, which ensured sufficiently good
statistics of the output. The mean value g and STD o
for the cut off stimuli sequence have been evaluated in a
regular manner.

Then we picked three initial DI values x, equal to
0.9z,7, or 1.1z, where T is the stationary value of DI

corresponding to the case with no HR variability
(0p=0,=0). An initial value x, was used to compute x, in
accordance with Eq. (3) using z; from the cutoff input z-
sequence. Then the process is iterated with the new value
of x for every element in the cutoff input z-sequence.
Three initial values were used to ensure that the iterative
process reaches a stationary state and the results are
independent of the initial conditions, which was checked
at the end of computations. The results were additionally
averaged over the initial conditions. In contrast to Eq. (3)
our simulations also reproduced the situations when a
stimulus arrives before the end of the refractory period.
In this case no action potential is generated, the current
iteration is skipped and the next iteration is performed
with the cardiac cycle length z,+ in Eq. (3) prolonged by



the skipped value of CCL, z,. Due to such skipping the
output z-sequence becomes different from the input
stimulus sequence. (The former can be identified with the
observed RR-interval sequence.) The output sequences
{z¢}, {x}, and {3} were then processed to estimate their
mean value, variance, auto-correlation and cross-
correlation coefficients. The results using the three
different initial conditions were graphically indiscernible.
and are illustrated in Figures 1 and 2.

Figure 1 presents the mean (stationary) APD value
versus z obtained at a fixed value of the initial STD, gy,
which was a STD of the initial normal distribution, before
the cutoff (at z=0.2s) and other modifications of the
pacing sequence. Each empty circle represents a mean
value of {} (n=z-xc) for a full run (approximately
3000) iterations in accordance with Eq. (3). Each run
produced a mean value of the input sequence z, and a
value of STD, o, which were then substituted into Eq.
(14). This turned Eq. (14) into a transcendental equation
for T to be solved numerically. (See Eg-s(1) and (2).)
Results of such computations are presented by a solid line
in Figure 1.
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Figure 1. Mean APD, T,, =7, versus mean Cardiac
Cycle Length (CCL), z at fixed 5,,=0.05. Empty circles
are simulation results, solid line computed using Eq. (14).
Figure 2 presents similar results versus actual o for
three fixed values of the initial (uncut) mean value, Zo,
corresponding to the original pacing sequence before the
cutoff and the z-sequence modifications arising from
stimuli occurring during refractory periods (i.e. when
%<0 in Eq. (3)). Note that such events were relatively rare
at small values of o, less than 1% when ©,=0.1.
Therefore, the main difference between z and 2o was
due to the cutting off all CCLs shorter than 0.2s.
Theoretical curves are obtained by solving transcendental
equation (14) with the parameter values of 2z, and o,
from the actual simulations.
The apparent growth of APD with the increase of o,
stems from strong dependence of APD on the pacing rate.
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Figure 2. Mean APD, T,, =7, versus actual STD, o,, at

a fixed initial mean value, zo. Curves 1, 2 and 3 were
computed at zo = 0.35, 0.3 and 0.25 sec, respectively.
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With the increase of the initial STD, o,y more and more
short CCLs are cut off so that the actual mean value, z,
grows along the curves from left to right. For curve 1, Z
grows from 0.2501s to 0.338s, for curve 2, from 0.3001 s
to 0.36 s, and for curve 3, from 0.35s to 0.3935s.

Thus, our simulations indicate that the analytical
results presented above hold very well, at least for small
fluctuations of the pacing rate.
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