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Abstract 

To investigate linear and nonlinear components of 

heart rate variability over the 24-hour period in healthy 

subjects, we analyzed RR interval series, derived from 70 

recordings in free-living conditions (37 ± 4 years, 34 

males) by different nonlinear approaches (Largest 

Lyapunov Exponent -LLE- computation, quantifying 

exponential divergence of trajectories in the phase space; 

corrected conditional entropy -CCE- estimating the 

amount of information in the signal, and pattern fractal 

analysis -PFD-, able to quantify the complexity of the 

time series), and by autoregressive spectral analysis, too. 

The LLE, PFD, and CCE showed a strong correlation, 

whereas nonlinear parameters were significantly related 

even with total power, VLF, LF, and HF power of the 

spectra. Thus, common physiological phenomena seem to 

modulate both linear and nonlinear behavior of heart 

rate in healthy human beings.  

 

1. Introduction 

The analysis of heart rate variability (HRV) 

investigated in the frequency domain by spectral analysis 

is a widely used tool to determinate the neuro-hormonal 

control of circulation [1]. More recently, techniques 

derived from nonlinear dynamics and chaos theory have 

been adapted to quantify the dynamic behavior of the 

HRV [2]. 

In this study, linear and nonlinear analysis have been 

applied to circadian RR time series in order to investigate 

relationships between these two different approaches. 

The linear approach to HRV analysis  consists mainly 

of spectral analysis, quantifying the spectral power in 

different frequency ranges. 

To characterize HRV nonlinear dynamics we selected  

different approaches: computation of the largest 

Lyapunov exponent (LLE), Corrected Conditional 

Entropy (CCE), Pattern Fractal Dimension (PFD). 

2. Nonlinear measures 

2.1. Lyapunov exponents 

Lyapunov exponents quantify the exponential 

divergence of trajectories in the reconstructed phase 

space and sensitivity to initial conditions. 

Given a d-dimensional phase space, there are d 

Lyapunov exponents which are related to the evolution of 

the axes of an infinitesimal d-sphere. If pi is the i
th

 axis 

the i
th

 exponent is defined by: 
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In our study, we considered only the largest 

Lyapunov exponent, defining the maximum orbit 

divergence. 

To compute LLE  from a time series, the phase space 

has been reconstructed from the RR interval series by the 

Takens method of delays [3,4]. We reconstructed the 

phase space vectors without interpolating the data 

choosing as sampling time the mean RR period, and 

using Takens formula, as if the RR series was sampled at 

regular intervals. The i
th

 phase space vector is: 
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Where s is the RR series, d the phase space dimension 

and τ the delay (multiple of the mean RR interval). LLE 

was computed using the Wolf algorithm [5], a set of 

initial conditions (two nearby vectors in the phase space) 

is observed over time, and LLE is evaluated by 

computing the divergence of the orbits (3) (see figure 1), 

according to: 
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Figure 1. The algorithm follows the evolution of orbits in 

the phase space. 
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where tM – t0 is the time length of the window and M the 

number of steps. 

To verify the functionality of the algorithm it was 

applied to some chaotic series (logistic map, Henon map). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. LLE values for the logistic map, between 

algorithm (gray dotted line), theoretical (black line): 

significant correspondence is evident. 

 

 

2.2. Fractal Dimension 

The fractal analysis of the time series was performed 

with an original algorithm determining Pattern Fractal 

Dimension (PFD) [6], PFD was derived from the 

classical Fractal Dimension formula (4), as defined by 

Katz [7], 
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 where L is the length of the pattern (i.e. the sum of the 

distances between successive points of the broken line), d 

is the diameter (i.e. the maximum distance between the 

first point and any other point of the pattern see Figure 3). 

The modified pattern fractal dimension is defined as, 
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where n represents the number of samples; the measure  

results to be independent of linear shifts, with values 

always greater than 1 and smaller than 2, as predicted by 

Mandelbrot [8]. 

 

 

Figure 3. The diameter d and the length L of the pattern. 

 

2.3. Conditional entropy 

The recurrence of specific patterns of a given series, as 

an index of regularity, is quantified by the Shannon 

Entropy (6). Given a unitary variance and zero mean 

series x(i), from the series a L-dimensional phase space is 

reconstructed with unitary delay, each vector y(i) 

represents a pattern of L consecutive samples. 
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where pL is the joint probability of the pattern y(i), CE 

can be represented as the variation of the SE with respect 

to L 
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The main drawback of this technique consists of the 

need of long-lasting series.  In order to overcome the 

problem related to the limited amount of data in short 

series and to avoid the a-priori selection of the 

embedding dimension the Corrected conditional Entropy 

(CCE) has been proposed [9], this method searches for 

the minimum of the function defined as: 

 

L 

d 
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( ) ( ) ( ) ( )1 1CCE L E L L E perc L= − + ⋅  (8) 

 

where E(L) is the estimate of the Shannon entropy of 

the process and perc(L) the percentage of length L 

patterns found only once in the signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Values of CCE (continuous line), CE (dashed 

line) and perc (dotted line) for gaussian noise and ar(2) 

second order autoregressive process plotted as a function 

of L. 

 

3. Subjects and methods 

The ECG was digitized at 250Hz. The time series of 

RR intervals were computed throughout the 24-hour 

period and analyzed in consecutive intervals of 256 data 

points by autoregressive technique, in 70 healthy subjects 

(34 males, 37 ± 4 years, mean ± STD). 

Each extracted time series (long about 10e4 points) 

was analyzed over consecutive 1024-beat long windows 

for LLE, and 256-beat for PFD and CCE. The LLE 

algorithm requires the determination of some parameters: 

the phase space dimension d, the delay τ . To choose the 

time delay τ, in order to examine the nonlinear signal 

structure, we searched for the first minimum in the graph 

of average mutual information. To evaluate the 

embedding dimension d, according to the method 

proposed by Grassberger and Procaccia [10], we 

determined the correlation dimension of the attractors. 

According to consensus standards [1], 3 major 

frequency components were considered in the RR power 

spectrum: a very low frequency (VLF) component (0.003 

to 0.03 Hz), a low frequency (LF) component (0.03 to 

0.15 Hz), and a high frequency (HF) component (0.15 to 

.40 Hz). For each subject the different spectrum 

components, the total spectrum power the mean and the 

standard deviation on the RR-intervals time series were 

extracted. 

The numerical results are reported as mean ± standard 

deviation; correlation between measures have been 

investigated by means of nonparametric Spearman’s r 

correlation coefficient test. A p value < .001 was 

considered significant. 

 

4. Results 

For the RR time series considered, LLE values 

resulted positive 0.10 ± 0.03, confirming the nonlinearity 

of the inherent dynamical system. For the same time 

series, the PFD resulted 1.59 ± 0.07, and CCE 1.2 ± 0.1 

(Figure 5). 

 

 

Figure 5. LLE, PFD and CCE values for the whole 

population. 

 

All nonlinear indexes increase at nighttime, when a 

parasimpathetic shift of autonomic balance is apparent, 

(Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Boxplot represents, LLE, PFD and CCE values 

over the 24-hour period in one subject (gray color 

represents nighttime). 
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Table 1. Spearman’s correlation coefficients between the 

different measures on the population of 70 subjects. The 

correlation is significant (p<0.001) for r values above 

0.38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression between nonlinear and linear parameters 

indicated a strong linear correlation among nonlinear 

parameters (LLE-PFD, LLE-CCE, PFD-CCE), and 

between the nonlinear parameters and HF (logarithm of 

high frequency spectral power), LF (low frequency) and 

TOT (total spectral power) (Table 1). 

 

5. Conclusions 

This analysis points out that common mechanics, 

likely associated with autonomic control of sinus mode 

activity, determine linear and nonlinear dynamics of 

HRV. Furthermore, different approaches to chaotic and 

complex dynamics of heart rate give concordant and 

complementary results, confirming that the complex 

nature of the signal, highlighted by PFD analysis, is 

tightly associated with its chaotic dynamics, described by 

LLE approach, and with its informative content, well 

represented by CCE. 
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LLE PFD CCE MEAN STD TOT VLF LF HF

LLE 0.956 0.802 0.279 0.565 0.830 0.321 0.761 0.839

PFD 0.956 0.846 0.417 0.649 0.909 0.467 0.831 0.906

CCE 0.802 0.846 0.520 0.517 0.738 0.441 0.679 0.782

MEAN 0.279 0.417 0.520 0.531 0.483 0.707 0.477 0.490

STD 0.565 0.649 0.517 0.531 0.636 0.556 0.501 0.705

TOT 0.830 0.909 0.738 0.483 0.636 0.553 0.950 0.935

VLF 0.321 0.467 0.441 0.707 0.556 0.553 0.549 0.528

LF 0.761 0.831 0.679 0.477 0.501 0.950 0.549 0.808

HF 0.839 0.906 0.782 0.490 0.705 0.935 0.528 0.808
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