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Abstract 

This paper presents a novel algorithm to detect onset 

and duration of QRS complexes. After low-pass filtering, 

the ECG signal is converted to a curve length signal by a 

transform in which a nonlinear scaling factor is 

introduced to enhance the QRS complex and to suppress 

unwanted noise. Adaptive thresholds are applied to the 

length signal to determine the onset and duration of the 

QRS complex. The algorithm was evaluated with the 

complete set of single channel ECGs (signal 0) from the 

MIT-BIH Arrhythmia Database, and achieved a gross 

QRS sensitivity of 99.65% and a gross QRS positive 

predictive accuracy of 99.77%. The QRS onset 

determination is very stable and is insensitive to QRS 

morphology change. The noise tolerance of the algorithm 

was evaluated using the MIT-BIH Noise Stress Test 

Database. The C source code for the single-channel 

algorithm has been contributed to PhysioToolkit and is 

freely available from PhysioNet (www.physionet.org). 

 

 

1. Introduction 
 

QRS detection is the first and most crucial step in 

automatic electrocardiogram (ECG) analyses such as 

arrhythmia detection and classification, ECG diagnosis, 

Holter, and heart rate variability (HRV) studies. 

Existing QRS detectors typically define the QRS 

fiducial point as the maximal slope or the peak of the R 

wave [1, 2]. The fiducial point will therefore vary with 

changes in QRS morphology associated with axis shifts 

and alterations in ventricular depolarization patterns. 

Such subtle variation may affect the accuracy in HRV 

analysis or ECG-blood pressure (BP) delay time studies 

[3]. Most existing QRS detectors do not provide a precise 

location for the beginning of the ventricular excitation, 

which is the time of interest in such studies. 

Only a few QRS detectors in the literature address the 

measurement of QRS duration [4, 5], which is a sensitive 

feature for beat classification and a useful reference for 

ST-segment measurement.  

     This article presents a robust algorithm to detect onset 

and duration of QRS complexes. The algorithm employs 

and extends the basics of the simplified curve length 

transform [6]. A nonlinear scaling factor for ECG curve 

length is introduced to enhance the QRS complex and to 

suppress other parts of ECG and unwanted noise, which 

makes the detection of QRS onset and duration from the 

ECG curve length features possible. The algorithm was 

initially developed in [7] and was recently re-

implemented. Its performance has been evaluated using 

standard databases [8, 9] and methodology [10]. The C 

source code of the algorithm has been made freely 

available via PhysioNet [11].  

 

2. Methods 
 

The algorithm consists of three components: a low-pass 

filter, nonlinearly scaled curve length transformation, and 

decision rules, as shown in figure 1.  

 

 

 

 

 
                 Figure 1.  The algorithm overview diagram 

 

The ECG signal, x(n), is the input of the low-pass filter 

which produces the filtered signal, y(n). The curve length 

transformation converts y(n) to a curve length signal, L(n). 

The decision rule is applied to L(n) to determine the time 

location of QRS onsets, t1, t2, …, and corresponding QRS 

durations, d1, d2, …. 

 

2.1. Low-pass filter 

For adult human ECG, the ideal passband for a QRS 

detector is approximately 5-15Hz [12, 13]. In the present 

algorithm, only a low-pass filter is necessary, because the 

 Curve length 

 transformation 
  Decision 

     rule 

y(n) x(n) L(n) 

ECG 
d1,d2,... 

t1,t2,… 

0276−6547/03 $17.00 © 2003 IEEE 737 Computers in Cardiology 2003;30:737−740.



nonlinearly scaled curve length transformation will 

substantially suppress low frequency components. Our 

detector uses a second order recursive low-pass filter as 

described by Lynn [14]. Formulas (1) and (2) are its 

transfer and frequency-response functions, respectively, 
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where T is the sampling period. The difference equation 

is: 
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where the 3dB cut-off frequency is about 16 Hz, for an 

ECG signal sampled at 250Hz, and the gain is 25 at 0 Hz. 

The phase shift is 20ms (5 samples at 250Hz). 

 

2.2. Curve length transformation 
 

According to ECG theory, the electrical activity of the 

myocardium can be considered to be equivalent to a 

synthetic electric dipole vector moving in the conductive 

space. The locus of the end point of the dipole vector 

constitutes a spatial curve and its projections on each 

lead axis form the corresponding ECG potentials. When 

the time, t, is considered as the parameter variable and 

each lead as a spatial coordinate, the spatial curve, 

)(tss
��

= , of the movement of the end point of the dipole 

vector can be completely or partially represented by the 

ECG potentials in each lead as follows: 
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where yi(t), i=1, 2, …, n, are the ECG potentials on each 

lead. 

It is known that, in certain time windows, the ECG 

curve length corresponding to the QRS complex is 

generally longer than that of the other parts with the same 

time window. If the time window is chosen to be 

approximately equal to the QRS duration, it can be 

expected to yield a locally maximal curve length at the 

QRS location. Thus, the ECG curve length feature can be 

used for QRS detection.  

 

Length transformation for one-channel ECG 

 

If y(t) is continuously differentiable over the time 

interval [a, b], then the length of y(t) in this time interval 

equals a bounded value L: 
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If w is the duration of the time window, the curve 

length transformation of function y = y(t) over the interval 

[t-w, t] is defined as: 
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where w << b - a and a+w < t < b. The discrete form of 

(6) is as follows: 
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where ∆yk = yk - yk-1 and 1+w < i ≤ N, N is the total 

number of the sample points and  w << N. Since ∆t is the 

sampling period (a constant), the above can be written as: 
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where C = ∆t
2
. C is a constant, but it can be considered as 

a nonlinear scaling factor. The effect of the C will be 

further discussed below. 

 

Length transformation for multi-channel ECG 
 

     The curve length transformation for n-dimensional 

function, yj = yj (t), j=1, 2, …, n, is defined as:  
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     Similar to (8), according to formula (9), we can define 

the n-channel ECG curve length transformation in discrete 

form as: 
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Selection of the window width (w) 
 

Figure 2 shows the relationship between an idealized 

QRS complex and its length transform (LT) signal. The 

ascendant section of the LT signal indicates the duration 

of QRS complex. In order to extract QRS duration 

information as well as the QRS location, the window w 
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should be approximately equal to the width of the widest 

QRS complex. For our application, the w is chosen to be 

130ms. 

        
 

Fig 2. Relationship between QRS complex and the LT signal, 

where QS is the QRS duration and w is the analyzing widow.  

 

The effect of the scaling factor C 

 

The constant C in (8) and (10) is a length-scaling 

factor.  Let us consider the length element in formula (8): 

   2
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If  l = ∆Li and  u=∆yi, then formula (11) becomes: 

  2
uCl +=                                                       (12) 

The effect of a signal difference u on a length element 

l is given by:  

2
uC

u

du

dl

+

=                                                     (13) 

We define dl/du as the length response ratio. 
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     Fig. 3. The effect of the signal difference u on the length 

transform, for C = 0, 1, 5, 10, 20, 30, 40, 50, and 60. 

 

Fig. 3 shows the length response ratio for various 

value of C. When C = 0, the length response ratio is 1.0 

for all values of u.  As C increases, the length response 

ratio to lower values of u is reduced dramatically and the 

ratio stays close to 1 at high values of u.  By selecting a 

proper C value, the LT signal response to QRS portion 

can be further enhanced and other parts of ECG such as P 

wave, T wave, and unwanted noise, especially those near 

the onset and end of the QRS, can be further suppressed. 

The C value in the algorithm is determined based on the 

statistical observations of the signal differential values of 

QRS complexes, P, and T waves [7]. The absolute C value 

is associated with the sampling frequency and sampling 

resolution of the signal. 

Figure 4 shows an example for a single channel ECG. 

Note the effects of the nonlinearly scaled LT for 

enhancing QRS and suppressing other parts and noises. 

 

  
 

 

Fig. 4. Example of single channel ECG processing. From top 

to bottom: the original ECG, the low-pass filtered ECG, and the 

non-linearly scaled LT signal; 5 seconds per trace.  
 

 

 2.3. Decision rule 

The decision rule consists of two procedures: (1) 

thresholding on the LT signal to find a possible QRS 

position; (2) searching locally to find the QRS onset and 

duration. 

(1) Adaptive thresholding  

A threshold base value is established and is initially 

assigned as three times the mean value of the LT signal for 

the initial 10-second period. The actual threshold is set to 

1/3 of the threshold base value. The threshold base value 

is then adaptively adjusted, based on the maximum LT 

value of each detected QRS complex.  

(2)  Local search strategies 

When the LT signal crosses the threshold, a probable 

QRS is noted. From the threshold-crossing point, tci, the 

algorithm searches backward for 125ms to get a minimum 

value, Lmini, and forward for 125ms to get a maximum 

value, Lmaxi. The difference, LAi = Lmaxk – Lmini is 

obtained. Then, from tci again, the algorithm searches 

backward to find the location, Qbi, where the LT value 

drops monotonically to Lmini + LAi/100, and searches 

forward to find the location, Sbi, where the LT increases to 

Lmaxi – LAi/20.  Qbi and Sbi are considered the base 

values of QRS onset and end, respectively.  The actual 

QRS onset is adjusted by -20ms or -5 samples and the 

actual end is adjusted by +20ms or +5 samples. This 

widening adjustment compensates for the time interval 
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loss caused by the onset/end thresholds. The adjustments 

are based on statistical observation of the differences 

between the algorithm’s onset/end estimates and human 

expert judgments.  

Finally, a 250ms eye-closing period is applied after 

each detected QRS to avoid possible double detection of 

the same beat. 
 

3. Results 

 Evaluated using bxb [10], a standard beat annotation 

comparison utility freely available from PhysioNet [11] , 

with the complete set of single channel ECGs (signal 0, 

resampled at 250Hz) from the MIT-BIH Arrhythmia 

Database [8], this algorithm achieved a gross QRS 

sensitivity of 99.65% and a gross QRS positive 

predictive accuracy of 99.77%.   

 Representative QRS complexes of 156 normal beats, 

82 premature ventricular contractions (PVCs), 23 bundle 

branch block (BBB) beats, and 22 fusion beats selected 

from 45 records in the MIT-BIH Arrhythmia Database 

were used to evaluate the accuracy of the algorithm's 

determinations of QRS onset and duration. By manual 

comparison of the QRS onset and end markers produced 

by the algorithm and those recorded by human experts, 

the mean difference for the QRS onset was 0.4 (+/- 2.4) 

ms for normal beats, 1.4ms (+/- 4.9ms) for PVCs, 6.1ms 

(+/- 8.3ms) for BBB beats, and 1.8ms (+/- 2.4ms) for 

fusion beats; the mean difference for the QRS end was 

1.4ms (+/- 2.4ms) for normal beats, 1.1ms (+/- 2.4ms) for 

PVCs, 5.2ms (+/- 6.3ms) for BBB beats, and 0.9ms (+/- 

2.1ms) for fusion beats. 

 The noise tolerance of the algorithm was evaluated 

using the MIT-BIH Noise Stress Test Database [9, 11]. 

Noise had no measurable effects above a signal-to-noise 

ratio (SNR) of 12 dB, at which QRS positive predictivity 

dropped from nearly 100% to 93%, while QRS 

sensitivity remained at nearly 100%. At an SNR of 6 dB, 

QRS sensitivity dropped to 99.6% and QRS positive 

predictivity dropped to 75%.  

 

4. Conclusion and discussion 

A novel, effective, and noise-tolerant QRS detection 

algorithm based on nonlinearly scaled ECG curve length 

feature has been developed. The QRS onset 

determination is very stable and is insensitive to QRS 

morphology change. The accuracy of the QRS duration 

detection is reasonably satisfactory and would be 

sufficient for arrhythmia analysis purposes. The 

algorithm has good tolerance to noise and is successful in 

rejecting baseline wander and suppressing tall P or T 

waves. The algorithm is easily extendable for analysis of 

multi-channel ECGs. The C source code for the single-

channel algorithm has been contributed to PhysioToolkit 

and is freely available from PhysioNet website 

(http://www.physionet.org).  
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