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Abstract 

As we already presented in the previous edition of the 

conference, our algorithm uses SPECT data to 

automatically recover the three-dimensional shape of the 

human's left ventricle. The reconstruction of both the 

internal and external surfaces, allowed us to present the 

synthetic cardiac cycle for an actual patient and derive 

its associated ejection fraction estimation. 

The segmentation module has been improved in order 

to provide a better and robust border detection and 

classification. Now the filtering process is based on the 

Maximum-Likelihood Classification approach (MLC), 

which rewards an edge depending on its probability to be 

a part of the left ventricle. The algorithm also takes into 

account vertical coherence between slices that improves 

the inputs adding information on the 3D shape. 

In terms of practical results, we test all these new 

features against several left-ventricle reconstructions 

applied to actual pathological hearts. 

 

1. Introduction 

Bidimensional processing is needed in order to mark 

the data boundaries of our SPECT imagery. From the 2D 

data slices, we want to build a 3D voxel dataset that has 

to be correctly labeled. 

From the labeling of the borders, we derive an external 

force, a vector field [1], which pushes our particle mesh 

to its final configuration, recovering the 3D desired shape 

[2]. 

A first approximation to the 3D modeling would be 

using a manual process with specific image-processing 

software like in the segmentation of the visible human 

dataset [3]. In this huge project, both the human male 

dataset and partially the female dataset have been 

segmented by interactive manual procedures by using 

commercial software. 

Automatic or semi-automatic segmentation is an open 

research task for the biomedical and engineering research 

community that is giving better results continuously. It 

gives rise to several difficulties that must be overcome in 

order to avoid manual processes that require deep 

medical knowledge and experience. 

2. The MLC filter 

We need to classify the voxels in our initial dataset 

according to some probability. This probability states if a 

voxel corresponds to the muscular tissue of the left 

ventricle. 

Given a data slice, there are several generic 

segmentation methods [4-5], that detect gradient changes, 

that can be used as the first sight to the edges that we are 

looking for. 

Nevertheless we need some decision rules in order to 

classify them as belonging to one of the possible classes: 

external border, internal border or none. See figure 1. 

Once the edges have been labeled and classified, we 

can find the vector field that will act as an external force 

for the reconstruction phase [1]. 

 

 
Figure 1. The segmented left ventricle. From left to right: 

internal (3D), external  (3D) and both borders (2D). 

 

Our MLC approach [6] serves as a reliable 

classification tool. Moreover that, our implementation 

finds automatically: 

‚" The smallest circle that can be used as a noise 

removal tool for all the slices. This circle should 

be more accurate than the manual one defined by 

physicians. 

‚" The division slice that identifies the beginning of 

the left ventricle’s apex. This slice is calculated 

first and refined after as explained in section 4. 

The algorithm ensures robustness because it performs 

all the calculations automatically, with no need of 

symmetry assumptions that might not be achievable due 

to the input dataset. 

Figure 2 presents some results obtained with the MLC 

filtering algorithm. As it shows, the borders have been 

correctly detected and labeled. 
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Figure 2. Slice 15 of the same patient during a complete 

cardiac cycle data set. 

 

The acquisition shown in figure 2 consists on eight 

captures ranging from systole to diastole. Typical 

durations for the MLC filtering process are between one 

and two seconds long (1.484 seconds for every static 

instant of figure 2, 23.744 seconds in total for all the 

slices). Each static dataset consists on 94208 voxels (64 x 

64 x 23). 

3. The need for the removal circle 

As a prior filter, physicians define a manual circle that 

acts as a noise-removal tool that deletes everything 

outside its diameter. It is a key-process for the diagnostic 

because of its posterior influence on the measures of 

ejection fraction and wall-thickness. We have automated 

the circle definition in order to get the smallest one that is 

still well-fit to data. 

However it is important to note that we use the 

removal circle to cut the contours that the generic edge 

detector finds, not the property itself. 

 

 
Figure 3. Using the circle for the property cutting off. 

 

If we use the circle filtering over the property values 

of a slice, we might create false high gradient regions that 

would be easy to confuse with the real borders. This 

effect is clearly pointed out in figure 3 where the property 

for a given section of the data slice is drawn as a white 

thin line and the gradient is shown by the dotted orange 

curve. The gradient is maximum at the cut limits although 

those do not correspond to the data borders, which are 

closer to the center. 

A partial solution might be smoothing the cut data 

although it is not a desirable method because it blurs all 

the high gradient changes, including the real borders that 

we are searching for. 

See [6] for more details on the automatic definition of 

the removal circle. 

 

4. Finding and refining the division slice 

The division slice downwards determines the passage 

from two (external and internal) to one (external) surface. 

It is located at the end of the endocardium (inner surface). 

Therefore this can be considered an anatomical constraint 

characteristic from the left ventricle, which is the actual 

data to be recovered. This constraint is an important 

feature because it limits the later processes. 

In order to find the associated slice, we base on the 

fact that the property value (blood irrigation) in the global 

centroid grows up as we go from top to bottom, as 

depicted in figure 4. 

The property is normalized for all the voxels along the 

dataset. This means that the intensity shown in figure 4 

stands for the percentage relative to the maximum. 

Therefore taking a look at different normalized datasets, 

gives a definitive clue about typical values for the 

property differences around the division slice. 

 

 
Figure 4. The property at the global centroid grows up 

(from left to right). 

 

Note that in figure 4, the division slice should be 

detected between the second and third image. 

Our implementation traverses the slices from top to 

bottom until the division slice is found. The differences in 

property are tracked until they get expectedly big. This 

high property slice determines the endocardium bottom 

and therefore the division slice. 

The division slice is refined to ensure its correctness. 

The refinement consists on taking advantage of the 

vertical coherence that should characterize our dataset. 

If we are consistent with our knowledge of the left 

ventricle, we must know that there are several cases that 

are very unlikely to happen. Those cases can be derived 

from the labeled borders in the slices. 

 

 
Figure 5. The division slice refinement process. 
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In figure 5, C is the division slice that we found before 

the refinement. A + 1, A and B are the slices in the top of 

it. The technique examines the labelings in the first three 

slices (A, B and C) to see if everything is coherent. It also 

examines the labeled borders of slice A + 1 when 

necessary. 

By examining the labelings we mean checking if the 

slice contains one (external) or two (external and internal) 

borders. 

 

Table 1. Cases to take into consideration when refining 

the division slice. 

Slice/Case 1 2 3 4 5 6 7 8 

A 1 1 1 1 2 2 2 2 

B 1 1 2 2 1 1 2 2 

C 1 2 1 2 1 2 1 2 

 

Table 1 shows the eight cases that arise. For every 

case, we can see how many borders are found in slices A, 

B and C. If there is only one border, we understand that it 

has to be external because we are in the apex area; if not 

we should have two borders, where one is internal and 

the other is external. Let us examine each case separately: 

 

1. Very unlikely to happen because it means that the 

apex is formed from lots of slices. This fact is totally 

uncommon. Notify it to the user. 

2. Not possible if the quality of the data is within some 

certain limits. We have two borders when beginning 

the apex and only one in the top of it. Notify it to the 

user. 

3. Neither A or B where incorrectly catalogued. We 

must check A + 1: 

a. If A + 1 contains two borders, the division 

slice is still considered to be C because we 

consider that A was incorrectly catalogued 

with a unique border when it should have 

two. 

b. If not, we do not have a possible situation if 

the quality of the data is within some certain 

limits. Notify it to the user. 

4. Not possible if the quality of the data is within some 

certain limits. Notify it to the user. 

5. B is the final division slice. 

6. Not possible if the quality of the data is within some 

certain limits. Notify it to the user. 

7. C is the final division slice so no changes have to be 

made. 

8. Not possible if the quality of the data is within some 

certain limits. Notify it to the user. 

 

In figure 6, the case has been labeled as 7. The 

algorithm outputs 2, 2 and 1 for the slices A, B and C 

respectively. As the images show, it is clear that slice C 

contains one unique external border while A and B 

contain two borders, one external and the other internal. 

Then the division slice was correctly labeled at the first 

process and no corrections need to be made. 

 
Figure 6. Case 7 of the division slice refinement process. 

5. Bounding Box based filtering 

After the previous filters, there are several contours 

that might “survive” and that are not associated to the real 

data borders. Besides that, those contours might be inside 

the automatic circle and big enough to avoid the 

consideration of spurious. 

The Bounding Box based filter is designed for taking 

ride of those. This filter relies totally in one of the slices, 

the slice that contained the biggest external contour that 

was used for finding the automatic circle [6]. It assumes 

that this is the biggest slice in terms of useful data, which 

should be true if the previous processes where successful. 

For the seek of clearness, we will name this slice, the big 

slice. 

The filter finds the circular bounding boxes associated 

to the borders of the big slice. Those bounding boxes are 

used to filter the upper and lower slices as it follows: 

 

‚" From the big slice to the division slice: we 

traverse all the slices by using the actual’s slice 

bounding boxes (internal and external) as a noise-

removal tool over all the subsequent slices. 

‚" From the big slice to the top: all the slices are 

filtered with the bounding boxes (internal and 

external) of the big slice. 

‚" From the division slice to the bottom: we traverse 

all the slices by using the current slice bounding 

box (only external) as a noise-removal tool over 

all the subsequent slices. 

 

Figure 7 shows an actual case where the big slice and 

its circular bounding boxes are shown. Both are rendered 

in cyan (external) and yellow (internal). 

The external border (strong blue) of this slice is the 

biggest within this dataset. 

All the calculations were performed automatically. 
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Figure 7. Using the bounding boxes filter in real data. 

6. Results 

We present six pathological cases that have been 

treated with the proposed algorithms. All of them were 

simulated using the Runge-Kutta 4 solver, the free 

deformation model and a final smoothing process [6]. 

The tests were performed in a Pentium III PC with 256 

MB RAM and a 32 MB accelerator card (mobility ATI 

Radeon). 

Figure 8 shows two datasets of ventricles originally 

affected by digestive activity in their apex. However, the 

algorithm can distinguish correctly the left ventricle 

borders. Note how the surfaces are well-fit to the 

voxelized data to recover. The simulations took 0.56 (top) 

and 0.45 (bottom) seconds. 

 

 
Figure 8. Digestive activity perturbing initial datasets. 

Left, final external surfaces; Right, final surfaces over the 

dataset to recover. 

 

Figure 9 shows four more cases. Their respective 

initial datasets presented occlusion defects located at 

several places. 

The defects were classified by physicians as inferior 

(1), apical (2), side (3) and vast anteroapical (4). The 

simulation times took 0.32, 0.45, 0.44 and 0.68 seconds 

respectively. 

Note how the lack of information in the original 

datasets influences the final reconstructed surfaces (cases 

3 and 4). 

The final smoothing process avoids the aparition of 

creases along the mesh. 

 

 
Figure 9. Oclusions perturbing initial datasets. For each 

case the final external surface is rendered in the left and 

mixed with the dataset to recover in the right. 
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