
Vertical Coherence Applied to Spect Imagery

in the 3D Reconstruction of the Left Ventricle

O Garcia-Panyella
1
, A Susin

2

1
La Salle School of Engineering,

2
Technical University of Catalonia, Barcelona, Spain

Abstract

As we already presented in the previous edition of the

conference, our algorithm uses SPECT data to

automatically recover the three-dimensional shape of the

human's left ventricle. The reconstruction of both the

internal and external surfaces, allowed us to present the

synthetic cardiac cycle for an actual patient and derive

its associated ejection fraction estimation.

The segmentation module has been improved in order

to provide a better and robust border detection and

classification. Now the filtering process is based on the

Maximum-Likelihood Classification approach (MLC),

which rewards an edge depending on its probability to be

a part of the left ventricle. The algorithm also takes into

account vertical coherence between slices that improves

the inputs adding information on the 3D shape.

In terms of practical results, we test all these new

features against several left-ventricle reconstructions

applied to actual pathological hearts.

1. Introduction

Bidimensional processing is needed in order to mark

the data boundaries of our SPECT imagery. From the 2D

data slices, we want to build a 3D voxel dataset that has

to be correctly labeled.

From the labeling of the borders, we derive an external

force, a vector field [1], which pushes our particle mesh

to its final configuration, recovering the 3D desired shape

[2].

A first approximation to the 3D modeling would be

using a manual process with specific image-processing

software like in the segmentation of the visible human

dataset [3]. In this huge project, both the human male

dataset and partially the female dataset have been

segmented by interactive manual procedures by using

commercial software.

Automatic or semi-automatic segmentation is an open

research task for the biomedical and engineering research

community that is giving better results continuously. It

gives rise to several difficulties that must be overcome in

order to avoid manual processes that require deep

medical knowledge and experience.

2. The MLC filter

We need to classify the voxels in our initial dataset

according to some probability. This probability states if a

voxel corresponds to the muscular tissue of the left

ventricle.

Given a data slice, there are several generic

segmentation methods [4-5], that detect gradient changes,

that can be used as the first sight to the edges that we are

looking for.

Nevertheless we need some decision rules in order to

classify them as belonging to one of the possible classes:

external border, internal border or none. See figure 1.

Once the edges have been labeled and classified, we

can find the vector field that will act as an external force

for the reconstruction phase [1].

Figure 1. The segmented left ventricle. From left to right:

internal (3D), external (3D) and both borders (2D).

Our MLC approach [6] serves as a reliable

classification tool. Moreover that, our implementation

finds automatically:

‚" The smallest circle that can be used as a noise

removal tool for all the slices. This circle should

be more accurate than the manual one defined by

physicians.

‚" The division slice that identifies the beginning of

the left ventricle’s apex. This slice is calculated

first and refined after as explained in section 4.

The algorithm ensures robustness because it performs

all the calculations automatically, with no need of

symmetry assumptions that might not be achievable due

to the input dataset.

Figure 2 presents some results obtained with the MLC

filtering algorithm. As it shows, the borders have been

correctly detected and labeled.

0276−6547/03 $17.00 © 2003 IEEE 753 Computers in Cardiology 2003;30:753−756.

Figure 2. Slice 15 of the same patient during a complete

cardiac cycle data set.

The acquisition shown in figure 2 consists on eight

captures ranging from systole to diastole. Typical

durations for the MLC filtering process are between one

and two seconds long (1.484 seconds for every static

instant of figure 2, 23.744 seconds in total for all the

slices). Each static dataset consists on 94208 voxels (64 x

64 x 23).

3. The need for the removal circle

As a prior filter, physicians define a manual circle that

acts as a noise-removal tool that deletes everything

outside its diameter. It is a key-process for the diagnostic

because of its posterior influence on the measures of

ejection fraction and wall-thickness. We have automated

the circle definition in order to get the smallest one that is

still well-fit to data.

However it is important to note that we use the

removal circle to cut the contours that the generic edge

detector finds, not the property itself.

Figure 3. Using the circle for the property cutting off.

If we use the circle filtering over the property values

of a slice, we might create false high gradient regions that

would be easy to confuse with the real borders. This

effect is clearly pointed out in figure 3 where the property

for a given section of the data slice is drawn as a white

thin line and the gradient is shown by the dotted orange

curve. The gradient is maximum at the cut limits although

those do not correspond to the data borders, which are

closer to the center.

A partial solution might be smoothing the cut data

although it is not a desirable method because it blurs all

the high gradient changes, including the real borders that

we are searching for.

See [6] for more details on the automatic definition of

the removal circle.

4. Finding and refining the division slice

The division slice downwards determines the passage

from two (external and internal) to one (external) surface.

It is located at the end of the endocardium (inner surface).

Therefore this can be considered an anatomical constraint

characteristic from the left ventricle, which is the actual

data to be recovered. This constraint is an important

feature because it limits the later processes.

In order to find the associated slice, we base on the

fact that the property value (blood irrigation) in the global

centroid grows up as we go from top to bottom, as

depicted in figure 4.

The property is normalized for all the voxels along the

dataset. This means that the intensity shown in figure 4

stands for the percentage relative to the maximum.

Therefore taking a look at different normalized datasets,

gives a definitive clue about typical values for the

property differences around the division slice.

Figure 4. The property at the global centroid grows up

(from left to right).

Note that in figure 4, the division slice should be

detected between the second and third image.

Our implementation traverses the slices from top to

bottom until the division slice is found. The differences in

property are tracked until they get expectedly big. This

high property slice determines the endocardium bottom

and therefore the division slice.

The division slice is refined to ensure its correctness.

The refinement consists on taking advantage of the

vertical coherence that should characterize our dataset.

If we are consistent with our knowledge of the left

ventricle, we must know that there are several cases that

are very unlikely to happen. Those cases can be derived

from the labeled borders in the slices.

Figure 5. The division slice refinement process.

754

In figure 5, C is the division slice that we found before

the refinement. A + 1, A and B are the slices in the top of

it. The technique examines the labelings in the first three

slices (A, B and C) to see if everything is coherent. It also

examines the labeled borders of slice A + 1 when

necessary.

By examining the labelings we mean checking if the

slice contains one (external) or two (external and internal)

borders.

Table 1. Cases to take into consideration when refining

the division slice.

Slice/Case 1 2 3 4 5 6 7 8

A 1 1 1 1 2 2 2 2

B 1 1 2 2 1 1 2 2

C 1 2 1 2 1 2 1 2

Table 1 shows the eight cases that arise. For every

case, we can see how many borders are found in slices A,

B and C. If there is only one border, we understand that it

has to be external because we are in the apex area; if not

we should have two borders, where one is internal and

the other is external. Let us examine each case separately:

1. Very unlikely to happen because it means that the

apex is formed from lots of slices. This fact is totally

uncommon. Notify it to the user.

2. Not possible if the quality of the data is within some

certain limits. We have two borders when beginning

the apex and only one in the top of it. Notify it to the

user.

3. Neither A or B where incorrectly catalogued. We

must check A + 1:

a. If A + 1 contains two borders, the division

slice is still considered to be C because we

consider that A was incorrectly catalogued

with a unique border when it should have

two.

b. If not, we do not have a possible situation if

the quality of the data is within some certain

limits. Notify it to the user.

4. Not possible if the quality of the data is within some

certain limits. Notify it to the user.

5. B is the final division slice.

6. Not possible if the quality of the data is within some

certain limits. Notify it to the user.

7. C is the final division slice so no changes have to be

made.

8. Not possible if the quality of the data is within some

certain limits. Notify it to the user.

In figure 6, the case has been labeled as 7. The

algorithm outputs 2, 2 and 1 for the slices A, B and C

respectively. As the images show, it is clear that slice C

contains one unique external border while A and B

contain two borders, one external and the other internal.

Then the division slice was correctly labeled at the first

process and no corrections need to be made.

Figure 6. Case 7 of the division slice refinement process.

5. Bounding Box based filtering

After the previous filters, there are several contours

that might “survive” and that are not associated to the real

data borders. Besides that, those contours might be inside

the automatic circle and big enough to avoid the

consideration of spurious.

The Bounding Box based filter is designed for taking

ride of those. This filter relies totally in one of the slices,

the slice that contained the biggest external contour that

was used for finding the automatic circle [6]. It assumes

that this is the biggest slice in terms of useful data, which

should be true if the previous processes where successful.

For the seek of clearness, we will name this slice, the big

slice.

The filter finds the circular bounding boxes associated

to the borders of the big slice. Those bounding boxes are

used to filter the upper and lower slices as it follows:

‚" From the big slice to the division slice: we

traverse all the slices by using the actual’s slice

bounding boxes (internal and external) as a noise-

removal tool over all the subsequent slices.

‚" From the big slice to the top: all the slices are

filtered with the bounding boxes (internal and

external) of the big slice.

‚" From the division slice to the bottom: we traverse

all the slices by using the current slice bounding

box (only external) as a noise-removal tool over

all the subsequent slices.

Figure 7 shows an actual case where the big slice and

its circular bounding boxes are shown. Both are rendered

in cyan (external) and yellow (internal).

The external border (strong blue) of this slice is the

biggest within this dataset.

All the calculations were performed automatically.

755

Figure 7. Using the bounding boxes filter in real data.

6. Results

We present six pathological cases that have been

treated with the proposed algorithms. All of them were

simulated using the Runge-Kutta 4 solver, the free

deformation model and a final smoothing process [6].

The tests were performed in a Pentium III PC with 256

MB RAM and a 32 MB accelerator card (mobility ATI

Radeon).

Figure 8 shows two datasets of ventricles originally

affected by digestive activity in their apex. However, the

algorithm can distinguish correctly the left ventricle

borders. Note how the surfaces are well-fit to the

voxelized data to recover. The simulations took 0.56 (top)

and 0.45 (bottom) seconds.

Figure 8. Digestive activity perturbing initial datasets.

Left, final external surfaces; Right, final surfaces over the

dataset to recover.

Figure 9 shows four more cases. Their respective

initial datasets presented occlusion defects located at

several places.

The defects were classified by physicians as inferior

(1), apical (2), side (3) and vast anteroapical (4). The

simulation times took 0.32, 0.45, 0.44 and 0.68 seconds

respectively.

Note how the lack of information in the original

datasets influences the final reconstructed surfaces (cases

3 and 4).

The final smoothing process avoids the aparition of

creases along the mesh.

Figure 9. Oclusions perturbing initial datasets. For each

case the final external surface is rendered in the left and

mixed with the dataset to recover in the right.

Acknowledgements

This work has been partially financed by the TIC2000-

1009 project. The first author is granted by an EPSON

“Rosina Ribalta” prize.

The authors thank the medical applications research

group at the IRI-UPC, the Nuclear Cardiology team at

Vall d’Hebrón Hospitals and the people integrating the

graphics & VR group at the Multimedia Section of La

Salle School of Engineering.

References

[1] Xu C, Prince JL. Snakes, shapes, and gradient vector flow.

IEEE Transactions on Image Processing 1998;7(3):359-

369.

[2] Garcia O, Susin A. Left Ventricle Volume Estimation from

3D SPECT Reconstruction. IEEE Computers in Cardiology

2002;29:621-624.

[3] Quackenbush D, Ratiu P, Kerr J. Segmentation of the

Visible Human Data Sets. Available at: URL:

http://www.nlm.nih.gov/research/visible/vhp_conf/quacken

b/quackenb.htm. Accessed July 20, 2003.

[4] Canny J. A Computational Approach to Edge Detection.

IEEE Transactions on Pattern Analysis and Machine

Intelligence 1986; 8(6):679-698.

[5] Ruzon M, Tomasi C. Color Edge Detection with the

Compass Operator. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition 1999;2:160-166.

[6] Garcia O, Susin A. MLC filtering applied to the 3D

reconstruction of the left ventricle. CEIG 2003, XIII

Congreso Español de Informática Gráfica 2003;13:17-30.

Address for correspondence.

1La Salle School of Engineering.

C/ Quatre Camins,2. 08022 Barcelona, Spain, Europe.

oscarg@salleURL.edu - http://www.salleurl.edu/~oscarg/

2Departament Matematica Aplicada.

Av/ Diagonal, 647. 08028 Barcelona, Spain, Europe.

toni.susin@upc.es - http://www-ma1.upc.es/~susin/

756

