# Cellular Modelling of Electrical Remodelling in Two Different Models of Human Atrial Myocytes

H Zhang<sup>1</sup>, JJ Zhu<sup>1</sup>, CJ Garratt<sup>2</sup>, AV Holden<sup>3</sup>

<sup>1</sup>UMIST, Manchester, UK; <sup>2</sup>The University of Manchester, Manchester, UK; <sup>3</sup>The University of Leeds, Leeds, UK

### Abstract

Changes in action potentials of atrial myocytes and various ionic channels induced by chronic atrial fibrillation (AF) have been described in the human. The mechanisms underlying the AF-induced action potential duration (APD) shortening have not been clearly identified. In this study we modify two different computational models of electrical activity of human atrial myocytes by incorporating chronic AF induced changes in several of the ionic channels systems found in myocytes. We examine the ionic mechanisms underlying the AF induced APD reduction and the relative roles of different remodeled ionic channels in producing the APD In both models we have found that AF reduction. induced changes in the ionic channel conductances and kinetics are able to reproduce the APD reduction seen experimentally. AF-induced down regulation of L-type Ca current is insufficient to account for the observed APD reduction, but up regulation of  $I_{Kl}$  has a much greater influence.

#### 1. Introduction

Changes in action potentials of atrial myocytes induced by chronic atrial fibrillation (AF) have been described in various animal models [1, 2] and in the human [3-5]. Among these changes, action potential duration (APD) shortening is predominant and believed to underlie the mechanisms of "AF begetting AF" [1]. APD shortening is expected to allow the initiation and favour the maintenance of multiple reentrant wavelets in a limited mass of atrial tissue [1, 6].

The mechanisms underlying the AF-induced APD reduction of atrial myocytes have not been clearly identified. It may be due to AF induced changes in the expression of various ionic channels. In a canine model, AF induces down regulation of the current densities of  $I_{Ca}$  and  $I_{to}$  [7]. AF induced APD reduction can be reproduced by application of nifedipine to block  $I_{CaL}$ . Thus down-regulation of  $I_{CaL}$  has been thought to be the main mechanism producing APD shortening with AF [7]. In the human atrium, AF induces up-regulation of  $I_{K1}$ , down-regulation of  $I_{CaL}$  and  $I_{to}$  current densities and changes in the kinetics of  $I_{to}$ ,  $I_{CaL}$  and  $I_{Na}$  [3-5]. The

relative role of these changes in channel regulation on APD shortening is unclear. Unlike the canine model, the role of down regulation of I<sub>CaL</sub> in producing APD reduction in human atrium is questionable as abolishing I<sub>CaL</sub> by 10µM nifedipine generates only a small APD reduction in human atrial myocytes [5]. In order to investigate the ionic mechanisms underlying the AF induced APD reduction in human atrium and the relative roles of individual remodelled ionic channels in producing APD reduction we have modified two computational models of electrical activity of human atrial myocytes [8-9] by incorporating chronic AF induced changes in various ionic channel conductances and kinetics into the models. With the modified models we apply the methods of Zhang et al. [10] to examine quantitatively the ionic mechanisms underlying the APD reduction and the relative role of the different types of ionic channel in producing APD reduction for human atrial cells in AF.

## 2. Results

Based on a similar set of experimental data two independent models of electrical activity of human atrial myocytes have been developed by Nygren et al. [8] and Courtemanche et al. [9]. Both models were validated and can reproduce action potentials of human atrial myocytes in normal physiological and pathological conditions. We have modified the two cellular models to incorporate the experimental data of AF induced changes in ionic channel conductance and kinetics of human atrial myocytes reported experimentally by Bosch et al. [4] and Workman et al. [5]. These AF induced changes include an up regulation of  $I_{K1}$  (the channel conductance was increased by 250%), down regulation of I<sub>CaL</sub> (the channel conductance was decreased by 74%), down regulation of  $I_{to}$  (the channel conductance was decreased by 85%), the shift of activation curve of Ito (by 16 mV) and inactivation curve of I<sub>Na</sub> (by 1.6 mV) in the depolarizing direction. The kinetics of the fast inactivation of I<sub>CaL</sub> was slowed by a 62% increase in the time constant. With these changes, both models can reproduce the action potential of human atrial myocytes with chronic AF. The model-generated action potentials under normal (control) and AF conditions were shown in Figure 1.

0276-6547/03 \$17.00 © 2003 IEEE



Figure 1. Computed action potential of human atrial myocytes for normal (control) and chronic atrial fibrillation (AF) conditions, produced by a supra-threshold stimulus with 0.6 nA amplitude and 4 ms duration. A) Action potential computed from the Nygren et al. model [8]. B) Action potential computed from the Courtemanche et al. [9] model.

The simulated action potentials with normal (control) and AF conditions show differences. With the Nygren et al. model the normal action potential has a resting potential (RP) of -74 mV and an APD<sub>90</sub> of 300 ms. The AF remodelled action potential has a RP of -78 mV and an APD<sub>90</sub> of 105 ms. Simulated AF remodelled parameters induces a 4 mV hyperpolarisation of the RP and a 65% reduction in APD<sub>90</sub>. With the Courtemanche *et al.* model the results are similar: AF induced a 4 mV hyperpolarisation of the RP and a 68% reduction in APD<sub>90</sub>. These changes in action potential computed from both models are quantitatively consistent with the experimental data observed by Bosch et al. [4] who have shown that the action potentials recorded from isolated atrial cells from patients with normal sinus rhythm are different to the action potentials recorded from isolated atrial cells from patients with chronic AF. With AF there was about 3 mV hyperpolarisation of the RP and about 58% reduction in the APD<sub>90</sub> [4].



Figure 2. The role of AF induced remodeling of  $I_{CaL}$  in producing APD reduction in computer models of electrical activity of human atrial myocytes. Action potential computed from the standard models was superimposed with action potential computed with AF remodelled models. A & B) Action potential computed from the AF remodelled models when AF action on  $I_{CaL}$  was omitted by using the Nygren *et al.* (A) and the Courtemanche *et al.* (B) models. C & D) Action potential computed from the AF remodelled models with AF action on  $I_{CaL}$  only was considered by using the Nygren *et al.* model (C) and the Courtemanche *et al.* model (D).

The relative importance of different remodelled ionic channels in the APD reduction was determined by two different methods: the removal and exclusive methods [10]. With the removal method, the AF-induced changes in the channel of interest were omitted while all other AF-induced changes were considered in the models. With the exclusive method, the AF-induced changes in the channel of interest only were considered while all other AF-induced changes were omitted while all other AF-induced changes in the channel of interest only were considered while all other AF-induced changes were omitted in the models.

Figure 2 shows the relative role of AF induced changes of  $I_{CaL}$  in producing APD reduction using the removal and the exclusive methods. With the Nygren *et al.* model, omitting the AF induced remodelling of  $I_{CaL}$  by the removal method, the AF remodelled parameters produced APD<sub>90</sub> reduction by 61% (Figure 2A). This value is close to the 65% reduction of APD<sub>90</sub> obtained when all AF actions are considered. For the Courtemanche *et al.* model without AF remodelling of the  $I_{CaL}$  (Figure 2B) there is a 43% reduction in APD<sub>90</sub>.



Figure 3. The role of AF induced remodeling of  $I_{K1}$  in producing APD reduction in computer models of electrical activity of human atrial myocytes. Action potential computed from the standard model was superimposed with action potential computed with AF condition. A) & B) Action potential computed from the remodelled models when AF action on  $I_{K1}$  was omitted by using the Nygren *et al.* model (A) and the Courtemanche *et al.* model (B). C) & D) Action potential computed from the AF remodelled models when AF action on  $I_{K1}$  only was considered by using the Nygren *et al.* model (C) and the Courtemanche *et al.* model (D).

Though AF induced down regulation of  $I_{CaL}$  contributed to APD reduction in the Courtemanche *et al.* model, the contribution was limited and cannot sufficiently account for the APD reduction produced when all AF induced changes were considered. In both models omitting AF remodelling on  $I_{CaL}$  does not affect APD reduction significantly. Down regulation in  $I_{CaL}$  is not the primary factor generating APD<sub>90</sub> reduction in AF.

Consistent results have been obtained by using the exclusive method. With the Nygren *et al.* model the AF induced changes on  $I_{CaL}$  alone (Figure 2C) generated a 12% APD<sub>90</sub> reduction. The resulted APD<sub>90</sub> reduction is less than the 65% APD<sub>90</sub> reduction produced when all actions were considered. Simulations using the Courtemanche *et al.* model showed similar results (Figure 2D). AF action on  $I_{CaL}$  produced a 27% APD<sub>90</sub> reduction. This is much less than the 68% reduction when all AF actions were considered. In both models quantitatively the AF induced remodelling of  $I_{CaL}$  is not the primary factor producing APD<sub>90</sub> reduction.

The role of AF induced up regulation of  $I_{K1}$  in producing APD reduction is illustrated in Figure 3. For the Nygren *et al.* model when AF induced change of  $I_{K1}$ 

is omitted from the AF remodelled parameters (Figure 3A), repolarisation of the action potential is abolished. Simulations using the Courtemanche *et al.* model showed that without the up regulation of  $I_{K1}$  AF produced a reduction of 35% in APD<sub>90</sub>, which is significant less than the 68% reduction of APD<sub>90</sub> produced when all AF actions were considered (Figure 3B). In both models up regulation of  $I_{K1}$  plays an important factor in producing APD<sub>90</sub> reduction seen in AF.

For the Nygren *et al.* model AF induced up regulation of  $I_{K1}$  alone produced a 68% reduction in APD<sub>90</sub>, similar to the 65% reduction when all AF induced remodelling were considered (Figure 3C). For the Courtemanche *et al.* model AF induced up regulation of  $I_{K1}$  alone produced a 40% reduction of APD<sub>90</sub> that is larger than the 27% reduction of APD when AF induced remodeling of  $I_{CaL}$ alone was considered (Figure 3D). For both models AF induced up regulation of  $I_{K1}$  is the predominant mechanism in producing APD reduction.

The role of AF induced changes of  $I_{to}$  in producing APD reduction was also investigated. When AF induced remodelling of  $I_{to}$  was omitted, AF remodeled parameters generate is a 68% reduction in APD<sub>90</sub> for the Nygren *et al.* model and a 70% reduction in APD<sub>90</sub> for the Courtemanche *et al.* model. Both values are close to the 65% and 68% of APD<sub>90</sub> reduction when all remodelled effects are considered for the Nygren *et al.* and Courtemenche *et al.* models respectively.

When AF induced remodelling of  $I_{to}$  alone was considered, with the Nygren *et al.* model, there is an increase in APD<sub>90</sub> by 13%. With this model down regulation of  $I_{to}$  does not contribute to APD reduction, but on the contrary tends to prolong APD. This is consistent with experimental observations using 4-AP on human atrial myocytes where blocking  $I_{to}$  produced APD prolongation [5]. With the Courtemanche *et al.* model remodelling of  $I_{to}$  alone produced prolongation of the action potential at phase 1 and 2, as in the Nygren *et al.* model and experimental data of Workman et al. [5], but an overall APD<sub>90</sub> reduction (11%). So AF remodelling of  $I_{to}$  does not contribute to APD reduction.

### **3.** Conclusions

Two independent models of action potential of human atrial myocytes [8-9] have been modified to incorporate the experimental data of chronic AF induced changes on various ionic channel kinetics and conductances in human atrial cells [3-5]. Using the models we have investigated the ionic mechanisms underlying the AF induced APD reduction in human atrium and the relative importance of individual remodelled ionic channels in producing APD reduction. We have shown that AF induced APD reduction in the electrical activity of human atrial myocytes can be sufficiently accounted for by the AF induced changes in the ionic channels of  $I_{CaL}$ ,  $I_{to}$  and  $I_{K1}$ . This verifies the hypothesis that AF induced changes of the electrical activity of human atrial myocytes are via AF induced specific changes in the maximal conductances and kinetics of some of the membrane ionic channels. The relative importance of individual remodelled ionic channels has been investigated by two different methods - the removal and exclusive methods. Both methods gave consistent results and suggest that AF actions on the sarcolemmal I<sub>Cal</sub> channels cannot produce an APD reduction comparable to that when all AF induced remodeling actions were considered. AF induced changes on I<sub>CaL</sub> have been proposed to be the primary factor for AF induced APD reduction. This conclusion was based on the experimental data on canine atrial myocytes [7]. However, in human atrium both models have shown that AF remodelling of I<sub>CaL</sub> contributed only partially to the APD reduction produced by AF.

The role of AF remodeling of  $I_{K1}$  is of interesting. With the removal method, removing AF remodelling of  $I_{K1}$  the repolarisation was abolished in the Nygren *et al.* model. With the exclusive method, AF remodelling of  $I_{K,1}$  alone can produce APD reduction comparable to that when all AF remodelling was considered. In the Courtemanche *et al.* model, though removing AF remodelling of  $I_{K1}$  did not abolish repolarisation, it did produce the largest change in APD reduction; and AF remodelling on  $I_{K1}$  alone also produced the largest APD<sub>90</sub> reduction we observed. Both models suggested that up regulation of  $I_{K1}$  by AF plays an important role in APD reduction.

### Acknowledgements

This work was supported by a grant from the EPSRC (GR/S03027/01) UK.

### References

- Wijffels MCEF, Kirchhof CJHJ, Dorland R, and Allessie MA. Atrial Fibrillation Begets Atrial Fibrillation : A Study in Awake Chronically Instrumented Goats Circ 1995; 92: 1954-1968.
- [2]Nattel S, Li D and Yue L. Basic mechanisms of atrial fibrillation - very new insights into very old ideas. Annual Rev. Physiol. 2000; 62: 51-77.
- [3]Van Wagoner DR et al. Outward K<sup>+</sup> Current Densities and Kv1.5 Expression Are Reduced in Chronic Human Atrial Fibrillation. Circ Res 1997; 80:772-781.
- [4]Bosch RF, Zeng X, Grammer JB, Popovic CM, Kuhlkamp V. Ionic mechanisms of electrical remodelling in human atrial fibrillation. Cardiovascular. Res. 1999; 44: 121-131.
- [5]Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovascular Res. 2001; 52: 226-235.
- [6]Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002; 415(6868): 219-26.
- [7]Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodelling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997; 81: 512-525.
- [8]Nygren A, Firek K, Fiest C, Clark JW, Linblad, DS, Clark RB, Giles WR. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 1998; 82: 63-81.
- [9]Courtemanche, M., Ramirez, R.J. and Nattel, S. (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275 H301-H321.
- [10]Zhang H, Holden AV, Noble D, Boyett MR. Analysis the chronotropic effect of ACh on sinoatrial node cell. J Cardiovasc Electrophysiol 2002; 13: 465-474.

Address for correspondence.

Dr. Henggui Zhang Biological Physics Group Physics Department UMIST, Manchester, M60 1QD, UK h.zhang-3@umist.ac.uk