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Abstract 

Nearly 60% of patients with heart failure (HF) suffer 

from cardiac death within five years after diagnosis. 

Strategies for early diagnosis of CHF are rather insuffi-

cient. Therefore, the objective of this study was to develop 

a parameter set for an enhanced risk stratification in HF 

patients. From 43 patients suffering from HF (NYHA≥II, 

EF<45%) and from 20 healthy subjects (REF) heart 

sound (HS), heart rate and blood pressure variability 

(HRV and BPV), interactions between heart rate and 

blood pressure (joint symbolic dynamics - JSD) and 

blood pressure morphology (BPM) were analyzed. Meas-

ures from BPV, BPM and JSD revealed high signifi-

cances (p<0.0001) discriminating REF and HF. A set of 

three parameters from HS, JSD and BPM was developed 

(sensitivity=91.7%, specificity=93.3%) for risk stratifica-

tion in patients with heart failure. 

 

1. Introduction 

Nowadays, about 14 million Europeans are suffered 

from heart failure (HF). Statistical analyses forecast an 

increase of patients with HF to 30 million by the year 

2020. Nearly 60% of HF patients suffer from cardiac 

death within five years after diagnosis. Furthermore, HF 

is the most common reason for hospitalization in the 

over-65 age group [1]. 

HF is a complex cardiovascular disease often resulting 

from any functional or structural cardiac disorder that is 

mostly caused by coronary artery disease, hypertension 

and cardiomyopathy and characterized by impaired ven-

tricular filling or reduced ventricular ejection fraction 

(EF) [2]. The extent of HF by physicians is often assessed 

according to the New York Heart Association (NYHA) 

functional classification system that places patients in the 

categories NYHA I-IV based on how much they are lim-

ited during physical activity. However, currently applied 

strategies for early diagnosis of HF are not sufficient. An 

improved risk stratification of HF is necessary to assess 

the prognosis of HF and to find an adapted drug treatment 

or an optimal timing for pacemaker or cardioverter defi-

brillator implantation or for heart transplantation. 

The aim of this study was to develop a multivariate 

parameter set for an enhanced risk stratification in 

patients with heart failure. 

2. Methods 

Within this study, 43 patients suffered from HF 

characterized by NYHA≥2 and EF<45% and 20 healthy 

subjects as reference (REF) were enrolled.  

30 minutes of ECG and synchronized continuously 

blood pressure (NIBP) were recorded under standardized 

resting conditions (supine position, quiet environment, 

same time and place) using the non-invasive Portapres 

M2 blood pressure monitor (TNO-TPD, Amsterdam, 

Netherlands). Thereafter, heart sound and synchronized 

ECG as well as NIBP were acquired on 9 auscultation 

areas over 5 heart beats during the patient hold his breath. 

For the recording of heart sound a hand-held electronic 

stethoscope (Welch Allyn® Master Elite Plus 

Stethoscope) was applied. Heart sound were digitized 

using a high quality USB soundcard (Maya EX, 

Audiotrak, sampling frequency 44100 Hz, resolution 16 

bit). Using a commercially available amplifier system 

(Twente Medical Systems, Netherlands) ECG and NIBP 

were sampled with fs=1600 Hz. After discretization the 

signals were stored in a data base together with the 

patient data. The diagnosis of all HF patients were 

confirmed by an experienced cardiologist using short- and 

long-term ECG as well as stress ECG, echocardiography 

and heart catheter examination. 

From the 30 minute data records the time series of 

heart rate (tachogram) consisting of beat-to-beat intervals 

(BBI) and of blood pressure (systogram/diastogram) were 

extracted. Ectopic beats as well as other disturbances 

were removed. To quantify the heart rate variability 

(HRV) and blood pressure variability (BPV) several 

parameters of time domain, frequency domain and 

nonlinear dynamics were calculated from every 

tachogram, systogram and diastogram. 

From time domain the following parameters [3] were 

calculated: 
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• meanNN = mean value of BBI time series [ms]; 

• sdNN =standard deviation of BBI time series [ms]; 

• rmssd = square root of the mean squared differ-

ences of successive beat-to-beat intervals [ms]; 

• sys_meanNN, dia_meanNN = mean systolic and 

diastolic blood pressure [mmHg]; 

• sys_sdNN, dia_sdNN = standard deviation of the 

systolic and diastolic blood pressure [mmHg]; 

• sys_rmssd, dia_rmssd = square root of the mean 

squared differences of successive systolic and 

diastolic blood pressure intervals [mmHg]. 

Power spectra of the time series were estimated using 

the Fast Fourier transform (Blackman Harris window) 

and frequency domain parameters were computed: 

• ULF, sys_ULF, dia_ULF = power in the frequency 

band 0-0.0033 Hz [s
2
]; 

• VLF, sys_VLF, dia_VLF = power in the frequency 

band 0.0033-0.04 Hz [s
2
]; 

• LF, sys_LF, dia_LF = power in the frequency 

band 0.04-0.15 Hz [s
2
]; 

• HF, sys_HF, dia_HF = power in the frequency 

band 0.15-0.4 Hz,[s
2
]; 

• P, sys_P, dia_P = total spectral power [s
2
]. 

Furthermore, the measures of normalized LFn, HFn as 

well as the ratios LF/HF, LF/P and HF/P were calculated. 

To classify dynamic changes within time series the 

following parameters from nonlinear symbolic dynamics 

[4] were estimated: 

• plvar2, plvar5, plvar20 = portion of low-variability 

patterns within the BBI time series <2ms, <5ms, 

<20ms over 6 heart cycles 

• phvar2, phvar5, phvar20 = portion of high-

variability patterns within the BBI time series 

>2ms, >5ms, >20ms over 6 heart cycles 

• sys_ plvar2, sys_plvar5, sys_plvar20 and 

dia_plvar2, dia_plvar5, dia_plvar20 = portion of 

low-variability patterns in the systolic or diastolic 

blood pressure <2mmHg, <5mmHg, <20mmHg; 

• sys_phvar2, sys_phvar5, sys_phvar20 and 

dia_phvar2, dia_phvar5, dia_phvar20 = portion of 

high-variability patterns in the systolic or diastolic 

blood pressure >2mmHg, >5mmHg, >20mmHg. 

To analyze the interactions between BBI and systolic 

blood pressure (SP) the baroreflex sensitivity (BRS) was 

estimated by using the dual sequence method [5]. 

Thereby the slope of the linear regression function 

between monotonous dropping SP sequences followed by 

monotonous shortening BBI sequences of three 

successive beats were calculated. 

A further nonlinear measure, the joint symbolic dy-

namics (JSD), was applied to describe the nonlinear inter-

actions between BBI and SP by means of symbols [6]. 

Thereby, both time series were transformed into symbol 

sequences of zeros (negative slope) and ones (positive 

slope) and words of three successive symbols were 

formed. The normalized probabilities of all single word 

types (n=64) occurrences were computed (JSD1-JSD64) 

using an 8x8 word distribution density matrix (columns = 

BBI words and rows = SP words) from word type 

[000,000]
T
 to [111,111]

T
. Furthermore the probabilities of 

the words within the BBI time series (BBI000 to BBI111) 

as well as within the SP series (SP000 to SP111) were 

determined. BBI010 and BBI101 are measures for the 

occurrence of alternans [7],[8].  

Considering the blood pressure morphology (BPM) 

several parameters describing amplitudes, time intervals 

and slopes as well as areas from the blood pressure 

waveform were estimated [9] according to Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Parameters of blood pressure morphology. SYS: 

endsystolic blood pressure; DIA: enddiastolic blood 

pressure; BPA: blood pressure wave amplitude; SSS: 

maximum systolic slope; MSS: mean systolic slope; SDS: 

maximum diastolic slope; IC: incisure; DP: dicrotic peak; 

T1-T4: time intervals; A1-A6: areas under the curve. 

For every heart beat the location and amplitude of the 

systolic (SYS) and enddiastolic blood pressure (DIA), 

dicrotic peak (DP) and incisure (IC) were determined 

using a correlation based algorithm. Blood pressure wave 

amplitude (BPA) was estimated as difference between 

SYS and DIA. Applying a linear regression algorithm the 

maximum and mean systolic slope (SSS, MSS) were 

computed between SYS and previous DIA and the mini-

mum diastolic slope (SDS) was calculated between DP 

and DIA. At last, some time intervals (T1 - T4), several 

areas (A1 - A6) under the blood pressure curve and BBI 

normalized durations from the R wave to SYS (RSYS), 

DIA (RDIA) and Incisur (RINC) were estimated. 

Finally, parameters that describe the first (frequency 

range: 5-100 Hz) and second heart sound (100-150 Hz) 

were calculated using a wavelet based heart sound analy-

sis method [10]. At first, for every patient and ausculta-

tion area BBI related heart sound segments were decom-

posed into frequency scale 6 (frequency range: 0-172 Hz) 

that is suitable for the analysis of the first and second 
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heart sound. For decomposition a multiresolution wavelet 

analysis, published by Mallat 1989 [11] using Daubechies 

wavelets of order 14 was applied. Noisy heart sound 

segments or any audible disturbance were excluded. The 

temporal locations of the first and second heart sound 

were calculated from every wavelet filtered signal using a 

Shannon energy and short-time Fourier transform (STFT) 

technique approach [12]. For every patient the first and 

second heart sounds were BBI normalized and averaged 

(HS1 and HS2) within the recorded auscultation areas. 

After a 6-month follow-up the HF group was divided 

into two subgroups: HF with no progression (HFLR, n=21, 

low risk group) and with significant progression of the 

disease including 7 patients suffered from cardiac death 

(HFHR, n=22, high risk group). Mann-Whitney U-test 

(p<0.05) was assessed to find out whether the applied 

methods could differentiate between the two age and 

gender matched groups HF* and REF* (Table 1) as well 

as between HFLR and HFHR (Table 2). Considering the 

multiple testing problem we used corrected significance 

levels according to Bonferroni. Cox regression analysis 

were applied to find a multivariate parameter set for an 

optimal discrimination between HFLR and HFHR. 

Table 1. Group description HF* and REF*: n - number of 

patients, EF - ejection fraction, NYHA - New York Heart 

Association functional class, Gender: 0-male, 1-female. 

group HF* (n=10) REF* (n=10) 

age 53.28 ± 8.15 47.49 ± 10.05 

gender 0.36 ± 0.51 0.60 ± 0.52 

EF 30.18 ± 7.64 - 

NYHA 2.45 ± 0.72 - 

Table 2. Group description HFLR and HFHR: n - number of 

patients, EF - ejection fraction, NYHA - New York Heart 

Association functional class, Gender: 0-male, 1-female. 

group HFLR (n=21) HFHR (n=22) 

age 64.36 ± 10.69 65.99 ± 10.66 

gender 0.29 ± 0.46 0.18 ± 0.39 

EF 39.43 ± 15.37 38.36 ± 15.03 

NYHA 2.48 ± 0.56 2.79 ± 0.55 

 

3. Results 

Measures from BPV, BPM and JSD revealed high 

significances (p<0.0001, Bonferroni) discriminating the 

groups HF* and REF* but not from HRV, BRS and HS 

(Table 3). Normalized low frequency component 

(dia_LFn) as a marker of predominantly sympathetic 

modulation as well as the frequency ratio (dia_LF/HF) 

describing the sympathovagal balance were significantly 

higher within the REF* group compared to HF*. The 

high frequency component (dia_HFn) as measure of the 

efferent vagal activity was significantly lower within the 

REF* group. BPM parameters describing the systolic 

slopes (SSS, MSS) and the blood pressure wave 

amplitude (BPA) of the blood pressure curve were clearly 

decreased within HF* compared to REF*. Furthermore, 

the BBI normalized interval between R wave and SYS 

(RSYS) and Incisur (RINC) were significantly different 

considering HF* and REF*. Finally the occurrence of 

alternans (BBI010, BBI101) was significantly higher 

within HF* in comparison to REF. 

Table 3. BPV, BPM and JSD - significant (p<0.0001) 

parameters for discrimination between HF* and REF*. 

parameter HF* REF* p 

dia_LFn 0.61±0.10 0.92±0.03 0.000006 

dia_HFn 0.39±0.10 0.08±0.03 0.000006 

dia_LF/HF 1.76±0.94 13.18±6.95 0.000006 

BPA [mmHg] 38.70±15.64 67.19±7.37 0.000068 

SSS [mmHg/ms] 0.62±0.27 1.44±0.20 0.000006 

MSS [mmHg/ms] 0.51±0.22 1.05±0.15 0.000068 

RSYS 0.35±0.04 0.24±0.03 0.000072 

RINC 1.50±0.07 1.87±0.20 0.000023 

BBI010 0.21±0.05 0.08±0.03 0.000006 

BBI101 0.19±0.05 0.09±0.03 0.000023 

 

To differentiate HFLR and HFHR patients at first 

univariate parameters were calculated (Table 4). NYHA 

was different in both groups (p=0.043). High risk patients 

were significantly more limited during physical activity 

as low risk patients. In contrast to the BPV analysis 

(sys_ULF/P, dia_VLP/P: p=0.047) the short-term HRV 

analysis revealed no significant differences between HFLR 

and HFHR. Blood pressure amplitude (BPA: p=0.03) as 

well as diastolic slope (SDS: p=0.023) were clearly 

decreased in HFHR patients. The probability of the word 

“011” within the BBI time series (BBI011: p=0.049) was 

significantly higher for the HFLR group in comparison to 

HFHR. From the heart sound analysis the normalized 

duration from the R wave to the first heart sound (HS1: 

p=0.022) was obviously extended within HFHR. 

Table 4. Univariate significant parameters (p<0.05) for 

discrimination between HFLR and HFHR. 

parameter HFLR HFHR p 

NYHA 2.48±0.56 2.80±0.55 0.043 

sys_ULF/P 0.25±0.18 0.40±0.25 0.047 

dia_VLF/P 0.51±0.19 0.39±0.23 0.047 

BPA [mmHg] 42.23±17.76 31.89±21.04 0.030 

SDS [mmHg/ms] -0.49 ±0.26 -0.34±0.09 0.023 

BBI011 0.13±0.03 0.12±0.03 0.049 

HS1 0.10±0.03 0.13±0.04 0.022 
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For risk stratification in differentiating the groups 

HFLR and HFHR an optimal set of three univariate 

significant parameters was determined leading to a 

sensitivity of 91.7% and a specificity of 93.3%. This 

parameter set consists of linear and non-linear parameters 

from HS (HS1), BPM (SDS) and JSD (BBI011). 

4. Discussion and conclusions 

The applied methods for analyzing BPV, BPM, JSD 

and HS appear to be suitable for an enhanced diagnosis of 

HF including improved risk stratification. According to 

the MACAS study [13] analysis of short term HRV did 

not contribute to risk stratification. However, Nolan et al 

[14] investigated 433 patients suffered from congestive 

heart failure (CHF) and showed that a reduced SDNN 

yielded from 24-hour Holter ECG identifies patients at 

high risk of death due to progressive heart failure. 

Galinier et al [15] demonstrated a relation between 

reduced daytime LF power from 24-hour Holter recording 

and sudden death in patients with CHF.  

Within this study a highly significant discrimination 

between HF and REF (p<0.0001) was revealed. 

Furthermore, an optimal parameter set of three parameters 

(HS1, SDS, BBI011) with a specificity of 93.3% and a 

sensitivity of 91.7% was estimated and seems to be useful 

for a risk stratification in HF patients.  

To validate the results of this study further prospective 

studies with an increased number of patients and a pro-

longed follow up period are necessary. A further study 

should investigate whether the combination with long-

term HRV parameters further enhances risk stratification 

in HF patients. 
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