
Incorporating Blood Pressure Load into an

Elastomechanical Ventricular Model

MB Mohr1, RR Schnell1, G Seemann1, FB Sachse2, O Dössel1
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Abstract

Elastomechanical modeling constitutes an essential step

for realistic computer simulations of the cardiac system.

The deformation of tissue effects e.g. cellular electrophys-

iology, which is commonly neglected in electrophysiolog-

ical simulations due to the lack of efficient mechanical

models. This work focuses on extending a mechanical de-

formation model by including blood pressure as endocar-

dial boundary condition. Four phases are distinguished

in a normal heart cycle: isovolumic contraction, isotonic

contraction, isometric relaxation, and isotonic relaxation.

The first three phases were modeled. The methods mod-

eling intraventricular pressure corresponding to contrac-

tion phases are illustrated, applied, and discussed. Simu-

lation results show that the mechanical model is capable

of incorporating a pressure load leading to a more realis-

tic contraction behavior. Furthermore, the ejection curve

resembles in closer detail measured data.

1. Introduction

Computer simulations based on physical models and

Virtual Reality techniques have become an appreciated

tool for medical doctors and scientists for surgical train-

ing and planning. Various mechanical models exist apply-

ing e.g. finite element methods and spring mass systems.

One part in mechanically modeling the heart consists of

acquiring information about anatomy and physiology. The

microscopic properties and behavior of myocardial tissue

need to be described by mathematical models. The other

part consists in modeling blood pressure, valve function,

and blood flow.

This work is focused on incorporating blood pressure

into an elastomechanical ventricular model [1, 2]. There-

fore, the windkessel and wave pressure model from Wang

et al. [3] was adapted and the relationship of pressure and

intraventricular volume change used.

2. Methods

Two confocal truncated ellipsoids provided the anatom-

ical model of a human left ventricle. In the model, human

myocardial fiber orientation was represented by a fiber

twist from the inside −75 ◦ to the outside 75 ◦ surface [2].

A cellular automaton was parameterized by force slopes

derived from detailed electrophysiological and force devel-

opment models. The automaton was used to simulate ven-

tricular excitation propagation and provided a spatial force

distribution at 10ms time steps during an interval of 1s.

An extended spring-mass system was based on the anatom-

ical model, which applies continuum mechanical methods

to model tissue properties e.g. incompressibility of tissue

and myocardial stress-strain relationship [2].

2.1. Pressure model

The pressure inside the left ventricular cavity was mod-

eled as a vector field with constant vector orientation but

changing vector length during simulation. The vector field

was set up by a virtual vertical line coinciding with the

main axis of the ellipsoid and ending at a focus point. Vec-

tors were spanned perpendicular from the vertical line to

each mass point at the inside surface and furthermore from

the focus of the ellipsoid to the masses at the apex (Fig. 1).

During simulation the left ventricular pressure was preset

Figure 1. Slice of ventricular model with virtual axis (cen-

ter) and normalized pressure vectors onto endocardial wall.
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and acquired as described below.

2.1.1. Blood pressure

The implementation of blood pressure boundary condi-

tions followed the heart cycle. Four phases are differenti-

ated starting with the systole of the ventricle.

The first phase is called isovolumic contraction. The

valves are closed and due to the incompressibility of blood

the intraventricular pressure rises at the commencing con-

traction of myocytes. The ventricle deforms towards a

spherical shape.

This phase was modeled by iterative estimation of intra-

ventricular volume and resulting pressure. As the spring

mass system does not support isovolumic contraction by

default, a contraction was accepted for each simulation

step and the changed volume was calculated. The dis-

placements of the masses were reset to the former defor-

mation and a pressure to compensate the volume change

was implemented. This procedure was repeated for the first

150ms to simulate isovolumic contraction.

In the second phase the valves open and blood ejects

into the aorta. For this phase the isotonic contraction the

findings of Wang et al. [3] were applied. They postulated a

time domain representation of the ventricular-arterial cou-

pling as a windkessel and wave system. They measured

the arterial pressure PA0, the blood ejected into the aorta

Qin, the compliance of the aortal tree C, and the effective

resistance R of the peripheral systemic circulation. Fur-

thermore, they assumed that the aortal behavior can be ex-

pressed as a windkessel, which acts as a hydraulic integra-

tor, where the variation of pressure is directly related to

the change in volume and inversely to its compliance. It

was possible to calculated the windkessel pressure PWk.

Lighthill et al. [4] proposed, that when considering wave

propagation in a reservoir the measured pressure must be

the sum of the reservoir pressure and the pressure due to

wave motion (excess pressure Pex).

Thus:

PA0(t) = PWk(t) + Pex(t) (1)

2.1.2. Windkesselpressure PWk

In case of Wang et al. [3] the aortic windkessel pressure

PWk depends on the inflow of ejected blood into the aorta

Qin, the outflow into the aortal tree Qout and the compli-

ance C of the whole aortal tree.

dPWk(t)

dt
=

Qin(t) − Qout(t)

C
(2)

The outflow can be described as a resistive relationship

Qout(t) = PW k(t)−P∞

R
representing the diastolic exponen-

tial pressure decay P∞ and R the effective resistance of

the peripherical systemic circulation. Substituting Qout(t)
into Eq. 2 results in:

dPWk(t)

dt
+

PWk(t) − P∞

RC
=

Qin(t)

C
(3)

with a general solution of

PWK(t)−P∞ = (P0−P∞)e
−1

RC +e
−t

RC

∫ t

t0

Qin(t′)

C
e

t
′

RC dt′

(4)

where t0 and P0 are the time and pressure at the onset of

ejection.

2.1.3. Pressure due to wave motion Pex

Due to conducted measurements and the application of

Lighthills equation (Eq. 1), Wang et al. found that the ex-

cess pressure Pex was directly and quite precisely propor-

tional to the aortic inflow Qin. Therefore the proximal re-

sistance Rprox was embedded which resembles the char-

acteristic impedance determined by Westerhof et al. [5].

Pex(t) = Qin(t)Rprox (5)

Hence, Eq. 1 can be written as:

PA0(t, Qin(t)) = PWk(t, Qin(t)) + Pex(Qin(t)) (6)

Since the pressure of the aorta during ejection resembles

that of the ventricle, Eq. 6 can be applied during isotonic

contraction phase two. The only changing variables con-

stitute the ejection volume Qin(t), which can be obtained

during deformation simulation and time t. The constants

can be acquired prior to simulation by measurement or

from literature.

Phase three starts with the closing of the valve (tcv) and

hence the end of ejection. During this isovolumic relax-

ation the pressure drops rapidly until it reaches the dias-

tolic atrial pressure (Patria). The pressure characteristic

of phase three (PP3) as described in the literature [6] was

approximated by an inverse polynomial decay:

PP3(t) =
(PA0(tcv) − Patria)tcv

t8
+ Patria (7)

During isotonic relaxation the blood refills the ventricle

with the aid of the atrial systole until a new ventricular sys-

tole commences. The isotonic relaxation describing phase

four and the contraction of the atrias were omitted.

One iteration step of the mechanical simulation was set

up as follows: The force vector field was loaded onto the

fiber springs. Furthermore, the pressure scalars obtained

by the methods described above elongated the pressure

vectors, which were loaded onto the masses of the endo-

cardial surface. The deformation was evaluated and the

resulting intraventricular volume and pressure change cal-

culated.
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Figure 2. Normalized left intraventricular volume. Slopes

describe the decreasing volume during deformation sim-

ulation. The opening of the aortic valves are indicated by

vertical lines. The slope with applied pressure shows an os-

cillation of volume due to the regularization of pressure de-

pendent on volume change, a steeper decent during opened

valve, and a slight drop after closing of the valve.

3. Results

Deformation simulations were performed with the me-

chanical model. The mechanical parameter set for the sim-

ulations with and without pressure was not varied. The dif-

ference of intraventricular volume change in simulations

with and without pressure load were recorded (Fig. 2). The

volume change in the simulation without pressure shows a

smooth curve. The volume decreases from the beginning

and rapidly drops between approx. t = 0.10s to t = 0.13s.

It reaches its minimum at t = 0.25s with a ∆Vmax ≈ 0.5,

then gradually rises to approx. 91% of the original volume.

In contrast, the intraventricular volume slope created

with pressure load shows a horizontal line with some os-

cillations until t = 0.15s. Furthermore, a steeper decent is

visible until t = 0.3s reaching a ∆Vmax ≈ 0.4. Another

small decent can be recognized followed by a rise parallel

to the slope simulated without pressure to approx. 97% of

the volume.

The pressure and the intraventricular volume were

recorded during the three phases (Fig. 3). The pressure

slope marked by phase one was used to model isovolumic

contraction. The curve during phase two was calculated by

Eq. 6. The inverse polynomial decay described by Eq. 7

resembles phase three.

The adaption of the model of Wang et al. was imple-

mented for phase two during t = 0.15s and t = 0.3s

(Fig. 4), as a change in volume is needed to derive the pres-

sure. The displaced volume Qin was used to calculate Pex,

PWk and PA0. The pressure PA0 shows a steep oscillation

during the first few milliseconds.

The displacements during simulation were recorded and

Figure 3. Pressure progression and left intraventricular

volume change. The upper graph displays the changing

left cavity volume. The lower graph shows the three phases

and the according pressure slopes. Vertical lines indicate

the opening t = 0.15s and closing t = 0.3s of the aortic

valve.

Figure 4. Pressure curves calculated with the model of

Wang and Lighthill. Model was applied during open valves

only.

displayed for successive timesteps (Fig. 5).

4. Discussion and conclusion

In this work, the intraventricular pressure during a heart

cycle was modeled and introduced into a hybrid deforma-

tion model for mechanical simulation. The pressure load

was implemented by a vector field, which was applied to

the intraventricular surface. Furthermore, three out of four

phases of the heart cycle were modeled with varying pres-

sure characteristics. Pressure progression, intraventricu-

lar volume change, and deformation was recorded and dis-

played. The pressure characteristics were modeled accord-

ing to the four heart contraction phases.

Phase one (Fig. 3) shows a steep raise in pressure un-

til t = 0.15s, which resembles recordings in the litera-

ture [6]. Oscillations in pressure and volume during this

309



Figure 5. Lateral view of deformed truncated half ellip-

soids at successive timesteps. The white wireframe de-

notes undeformed ellipsoid. The deformation at timestep

0.15s shows the isometric contraction phase, whereas at

0.26s the ejection phase is presented. The relaxation phase

is displayed by the figures at timesteps 0.34s, and the end

of simulation at timestep 0.99s.

phase are caused by not precise estimate of pressure due

to volume change. This can be enhanced by applying

smaller timesteps and using mathematical methods to de-

rive adapted pressure values.

During phase two, the findings of Wang et al. were ap-

plied. The ejection volume was acquired and resulted in a

pressure curve. The oscillations shortly after valve open-

ing are due to the size of timestep, the passover from phase

one, and the fast ejection. This phase describes the atrial

pressure curve and should start with the offset pressure of

the atrial base pressure. Hence, the pressure curve of this

phase should commence with an offset given by the peak

of phase one. However the forces driving the contraction

were not able to sustain the pressure offset given by phase

one. The pressure peak of phase one is almost double

the size of the pressure generated by the model of Wang

et al.. Therefore, further investigations need to be con-

ducted focusing on cross over from pressure phases. Fur-

thermore, the applied forces need to be reevaluated, since

electrophysiological and force development models were

used based on fully relaxed muscle fibers.

Phase three resembles isovolumic relaxation, where the

pressure was modeled by a simple inverse polynomial de-

cay (Eq. 7). However, further evaluation of this function

has to be conducted, due to the steep descent. Further-

more, phase four needs to be take into account to complete

the model for a full heart cycle.

The normalized intraventricular volume with and with-

out pressure was plotted (Fig. 2). In the isovolumic con-

traction phase the slopes show an explicite difference be-

tween simulations with and without pressure. The slope

with pressure shows light oscillations between 0 and 0.15s.

The steeper descent in the pressure simulations during

opened aortic valve indicates a faster ejection rate. At the

border from phase two to three another descent of the vol-

ume slope is visible. The investigation showed that the in-

traventricular pressure in phase three decays faster than the

contraction initiating force. Therefore, another light con-

traction takes place in phase three. However, this issue can

be addressed by applying contraction dependent force gen-

eration models instead of a static version. Furthermore, the

inverse polynomial decay used to model phase three can be

reevaluated.

5. Future work

Research will be directed towards applying MRI scans

of ventricles to create realistic anatomical models. Fur-

thermore, mathematical models for phases one and three

need to be evaluated and applied. The crossover of pres-

sure phases will be enhanced and phase four will be mod-

eled.
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