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Abstract

We compare and quantify the scaling and long-range

persistence (long memory) in time series using five differ-

ent techniques: power-spectral, wavelet variance, semi-

variograms, rescaled-range (R/S) and detrended fluctu-

ation analysis. We apply these techniques to both nor-

mal and log-normal synthetic fractional noises and mo-

tions generated using the spectral method, where a nor-

mally distributed white noise is appropriately filtered such

that its power-spectral density, S, depends upon frequency,

f , according to S ∼ f−β . Finally, we examine the long-

range persistence of cardiac interbeat intervals. We find

that for normal [N] and log-normal [LN] fractional noises:

(1) power-spectral analysis does a reasonably good job

at correctly quantifying the strength of long-range persis-

tence for all β [N] and β > −0.5 [LN]; (2) semivari-

ograms, 1.2 < β < 2.5 [N and LN]; (3) rescaled range

0.0 < β < 0.8 [N and LN]; (4) wavelet variance analysis

all β [N] and β > −0.8 [LN]; (5) detrended fluctuation

analysis −0.8 < β < 2.2 [N] and −0.2 < β < 2.2 [LN].

1. Introduction

The human body relies on a number of control mech-

anisms to function efficiently. The complexity of the un-

derlying physiological system gives rise to biomedical sig-

nals that often reflect non-stationary nonlinear dynamics.

Biomedical signals recorded from healthy subjects typi-

cally display erratic fluctuations and contain long-range

correlations. This contradicts the classical assumption of

homeostasis where healthy systems are expected to self-

regulate in an attempt to reduce variability [1].

The heart is particularly adaptable in terms of having

the ability to quickly respond to external perturbations and

changes in activity such as resting, walking, running and

sleeping. This adaptability and underlying complexity of

the heart may be quantified using an analysis of cardiac

inter-beat time intervals derived from the electrocardio-

gram. Furthermore, this complexity appears to change in

a characteristic way when the subjects age or experience

disease, reflecting the subsequent loss of adaptability [2].

Self-affine time series, where the power-spectral density

scales as a power of the frequency, appear in a wide variety

of contexts; examples in biomedical engineering include

cardiac rhythms and gait dynamics [1]. Stochastic time se-

ries are characterized by a statistical distribution of values

and by their persistence. Persistence is the degree to which

values in a time series are internally correlated and can be

classified in terms of range, short or long, and strength,

weak or strong. Self-affine time series are scale invariant,

thus always exhibit long-range persistence. Here, we quan-

tify synthetic self-affine time series with varying degrees of

long-range persistence strength and put them into the con-

text of of cardiac inter-beat intervals.

An analysis of the self-similarity of biomedical signals

provides a means of distinguishing between health and

disease and monitoring the effect of ageing [3, 4]. This

may offer the possibility of designing new diagnostic tools.

The essential idea is to quantify the self-similarity of the

recorded biomedical signal. One approach is to calculate

the power-spectral density, S(f), and estimate the power-

law scaling exponent, β, that satisfies S(f) ∼ f−β . This

exponent, β, may be viewed as a measure of the roughness

of the time series, with smoother self-similar time series

having larger values of β. The 1/f -like noise (β = 1) char-

acteristic of cardiac inter-beat interval time series [5, 1] is

midway between the complete randomness of white noise

(β = 0) and the much smoother Brownian motion (β = 2).

2. Methods

In this section, five techniques are described that can

be used to quantify self-similarity or persistence. Fol-

lowing [6], spectral analysis, semivariograms, rescaled-

range and wavelet analysis for quantifying self-similarity

are described. Furthermore, the notation Ha, Hu, Hw is

used to denote the Hausdorff exponent, Hurst exponent

and wavelet variance exponent. This is done, following

[6], as the traditional terminology of using H for both the
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Hausdorff exponent and the Hurst exponent has resulted

in considerable confusion in the literature. Another tech-

nique, known as detrended fluctuation analysis (DFA), is

briefly summarised [7]. A method for generating synthetic

data for the purpose of evaluating and comparing these five

techniques is also described.

2.1. Spectral analysis

The Fourier transform, which is used to decompose the

signal into sine and cosine basis functions, forms the ba-

sis of spectral analysis [8]. For a discrete time series xn,

n = 1, . . . , N , where the total duration of the signal, T ,

is divided into N intervals of size δ = T/N , the discrete

Fourier transform (DFT) and inverse DFT are defined by

Xk = δ
N

∑

n=1

xne2πink/N , k = 1, . . . , N, (1)

and

xn =
1

Nδ

N
∑

k=1

Xke−2πink/N , n = 1, . . . , N. (2)

The power-spectral density function Sk, is given by

Sk = lim
N→∞

2|Xk|2
Nδ

, k = 1, . . . , N/2, (3)

where the factor of 2 in Eq. (3) arises because of summing

up to N/2 instead of N as the Fourier coefficients, Xk, are

symmetric, |Xk| = |XN−k|. For a self-affine time series,

Sk ∼ f−β
k where fk = k

Nδ and k = 1, . . . , N/2. In prac-

tice, the fast Fourier transform (FFT) provides a computa-

tionally efficient approach for determining the DFT [9]. A

Welch window was employed to reduce spectral leakage.

It is also important to remove the mean from the time series

before windowing when estimating the power spectrum.

In terms of typical noise processes, white noise has ap-

proximately constant power densities, Sk, at all frequen-

cies and has no correlations between values in the series

giving β = 0. In contrast, Brownian motion has strong

long-range persistence with β = 2. Cardiac inter-beat in-

terval time series, for frequencies below 0.1 Hz, have been

described as a 1/f noise process [5] or pink noise where

the power-spectral analysis gives β = 1.

2.2. Semivariograms

The semivariogram provides a method for measuring the

long-range correlations of non-stationary time series [10].

For discrete time series, the semivariogram is given by

γk =
1

2(N − k)

N−k
∑

n=1

(yn+k − yn)2, (4)

where k is the lag. For a self-affine time series, the semi-

variogram scales as γk ∼ k2Ha where Ha is the Hausdorff

dimension.

2.3. Rescaled-range

Rescaled Range (R/S) analysis was first introduced by

Hurst [11] in the context of his studies of the hydrology

of the Nile river. Let the original time series have N data

points. For subsets of this time series with k data points,

xn, n = 1, . . . , k, the mean, µk and standard deviation, σk,

are calculated. The running sum, ym, relative to the mean,

ym =
∑m

n=1(xn − µk) is then computed. Next, the range,

Rk = maxm ym−minm ym, dispersion, Sk = σN , and fi-

nally their ratio, Rk/Sk, are determined. Suppose the orig-

inal time series has N points. For successive subintervals,

k of N , the ratio, R/S is computed. This may be achieved

by considering k = N,N/2, N/4, . . . , 8. For k = N/q,

the data set is divided into q parts and the quantity Rk/Sk

is computed q times leading to an average 〈Rk/Sk〉. For

a self-affine time series, 〈Rk/Sk〉 ∼
(

k
2

)Hu

, where Hu is

the Hurst exponent.

2.4. Wavelet analysis

The wavelet transform is a generalisation of the Fourier

transform and provides information about both the spatial

and frequency dependence of a time series [12]. It may be

viewed as a filter g[(t′ − t)/a] (centred at time t with scale

parameter a) that is convolved with a time series, f(t),

W (t, a) =
1

a1/2

∫

∞

∞

g

(

t′ − t

a

)

f(t′)dt′. (5)

The function g(t) is known as the mother wavelet and is

used to generate a family of rescaled wavelets with the nor-

malisation factor a1/2 ensuring that the transformed signal

has the same energy at all scales. Furthermore, it is chosen

to satisfy
∫

∞

−∞
g(t)dt = 0. In the following, the Mexican

hat wavelet, given by the second derivative of the Gaussian

distribution,

g(t′) =
1√
2π

(1 − t′2) exp

(−t′2

2

)

, (6)

is employed. For a self-affine time series (see [6]), the

variance, VW , of the wavelets W (t, a) will scale with a
such that VW ∼ aHW .

2.5. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was introduced

for quantifying the self-similarity of nonstationary time se-

ries and is widely used for the analysis of biomedical sig-

nals [7]. The raw time series xn is first integrated to give
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yn =
∑n

i=1 xi for n = 1, . . . , N . For each length scale,

m, yn is divided into segments of equal length, m. In each

segment, the data is detrended by subtracting the local lin-

ear least squares fit, y
(m)
k . The root-mean-square fluctua-

tion of this integrated and detrended time series is given

by

F (m) =

√

√

√

√

1

N

N
∑

k=1

[yk − y
(m)
k ]2. (7)

The average fluctuation, F (m), is then calculated for each

segment m. For a self-affine time series, F (m) scales with

m according to F (m) ∼ mα.

2.6. Synthetic data

Normally distributed white noise is an example of a sta-

tionary process with β = 0. Brownian motion, obtained by

summing a white noise time series, is a non-stationary pro-

cess with β = 2. We distinguish fractional noises, β < 1,

from fractional motions, β > 1 in an attempt to separate

weak long-range persistence, 0 < β < 1, from strong

long-range persistence, β > 1. Those fractional noises

with β < 0 are considered “anti-persistence”. In general,

any self-affine time series with power-spectral density ex-

ponent β can be transformed to β′ = β + 2 by summation

and β′ = β − 2 by differentiation.

A realisation of noise processes with different values of

β were obtained by (i) computing the DFT of a normally

distributed white noise, (ii) filtering the resulting Fourier

coefficients, Xk, using X ′

k = (k/N)−β/2Xk, and (iii) tak-

ing the inverse DFT of the filtered Fourier coefficients, X ′

k.

A total of 25 synthetic time series with normal distri-

butions were produced, each with 4,096 points. In order

to assess the robustness of each of the five techniques for

dealing with non-normally distributed time series, which

is often the case for cardiac inter-beat intervals, we also

used log-normal distributions. The coefficient of variation,

ζ = σ/µ, defined as the ratio of the standard deviation,

σ, to the mean, µ, provides a description of these dis-

tributions. Along with the normally distributed synthetic

time series, we also considered coefficients of variation of

ζ = 0.25 and ζ = 0.5.

3. Results

The five techniques described in Section 2 were used to

estimate the scaling exponents of time series with normal

distributions and log-normal distributions with coefficients

of variation of ζ = 0.25 and ζ = 0.5. Figure 1 summarises

the results of each technique applied to our synthetic time

series. The x-axis represents the “benchmark” synthetic

fractional noises with the known distributions (normal and

Figure 1. Scaling exponent estimates using: (a) spectral

analysis; (b) semivariograms; (c) rescaled-range analysis;

(d) wavelet analysis; and (e) detrended fluctuation analysis

(DFA).
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log-normal) and different strengths of long-range persis-

tence ranging over −2 ≤ β ≤ 4. The y-axis shows the

estimated exponents using each technique as a function of

the theoretical values of β. We now describe the relation-

ships between the different exponents obtained from these

five techniques and the theoretical exponent β.

Spectral analysis: The power-spectral density exponent,

β = βps, quantifies self-similarity for almost all values of

β with normally distributed time series. For log-normal

fractional noises, the results are biased for β < −0.5.

Semivariogram: The semivariogram provides an estimate

of the Hausdorff exponent, Ha, satisfying β = 2Ha + 1 in

the range 1.2 < β < 2.5 for both normal and log-normal

fractional noises.

Rescaled-range: Rescaled-range provides an estimate of

the Hurst exponent, Hu, satisfying β = 2Hu − 1 for

0 < β < 0.8 with accuracy very poor for β < 0.

Wavelet analysis: The wavelet analysis provides an esti-

mate of Hw, which satisfies β = HW for the entire range

−2 ≤ β ≤ 4. For β < −0.8 the estimates are poor for

non-normal noises.

Detrended fluctuation analysis: DFA gives β = 2α − 1
for −0.8 < β < 2.2 for both normal and log-normal

noises. For log-normal noises, accuracy is reasonable for

−0.2 < β < 2.2.

Finally we used the MIT-BIH Normal Sinus Rhythm

Database, available from Physionet [13], to investigate the

24-hour cardiac rhythms of a group of subjects with no sig-

nificant arrhythmias, including 5 men (aged 26 to 45) and

13 women (aged 20 to 50). These time series contained

between 74 and 114 thousand data points. We employed

the most accurate and robust of the five techniques consid-

ered here, wavelet analysis, to estimate β and found that

β = 1.13 ± 0.19 (mean ± standard deviation).

4. Conclusion

This analysis has shown that the techniques available for

estimating the scaling of self-similar time series provide

varying levels of accuracy depending on β and the degree

of non-normality of the time series being considered. For

normally distributed time series, semivariograms provide

accurate estimates for 1.2 < β < 2.5, rescaled-range for

0.0 < β < 0.8, DFA for −0.8 < β < 2.2, and power-

spectra and wavelets for all values of β. All techniques

demonstrate decreasing accuracy for log-normal fractional

noises with increasing coefficient of variance, particularly

for antipersistent time series.

Wavelet analysis offers the best performance both in

terms of providing accurate estimates for normally dis-

tributed time series over the entire range −2 ≤ β ≤ 4
and having the least decrease in accuracy for log-normal

noises. The range of values of β estimated for a group of

healthy subjects, β = 1.13 ± 0.19 , confirms that cardiac

rhythms are similar to pink noise (β = 1). Furthermore

the analysis suggests that spectral, wavelet and detrended

fluctuation analysis are the most suitable techniques for in-

vestigating cardiac inter-beat interval time series.
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