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Abstract 

Multichannel electrocardiography is an extension of 

the conventional electrocardiography. It enables to 

acquire refined data for more complex analysis. Body 

surface mapping is a graphical presentation of cardiac 

activity as measured from the body surface. In this work 

we have focused on feature extraction from the measured 

signals and finding relations between them.  

Three groups of healthy women have been measured; 

one group with heart signal, as we assume, predictably 

distorted by pregnancy; second group of women after 

delivery, and third group of healthy not pregnant women. 

We have generated several decision trees from the 

extracted values, using different combinations of features. 

We have identified several features that may be more 

discriminative than the other ones.  

 

1. Introduction 

Electrocardiography (ECG) deals with the electrical 

activity of the heart. An ECG signal can provide us with a 

great deal of information on the normal and pathological 

physiology of heart activity. An ECG as an electrical 

manifestation of a human activity is composed of 

heartbeats that repeat periodically. In each heart beat 

several waves and interwave sections can be recognized. 

The shape and length of these waves and interwave 

sections characterize cardiovascular diseases, arrhythmia, 

ischemia and further heart diseases. Basic waves in ECG 

are denoted by P, Q, R, S, T, U. From these, the 

denotation (and length) of the intervals and segments is 

derived. In medical practice ECG analysis is performed 

nearly exclusively as a temporal analysis. When 

interpreting an ECG, physicians first locate the P waves, 

QRS complexes, T complexes and U waves. Then they 

interpret the shapes (morphology) of these waves and 

complexes; in addition they calculate the heights and the 

interval of each wave, such as the RR interval, PP 

interval, PR interval, QT interval, and ST segment. From 

the technical point of view, the assumption for ECG 

analysis is the existence of perfect ECG signals (i.e. 

signals with sufficient dynamics and a minimum of 

artifacts). The standard 12-lead ECG is still the only 

universally accepted practical method used for diagnosing 

heart diseases. However, it is not optimal and has its 

limitations as many research and clinical studies show 

[1], [2]. Multichannel ECG (MECG) is an extension of 

the conventional electrocardiography that provides 

refined non-invasive characterization of cardiac activity. 

The MECG systems may use 30-300 electrodes. 

Increased spatial sampling on the body surface provides 

more in-depth information on the cardiac generated 

potentials, and thus in many cases exhibits better 

diagnostic value [3]. However, the MECG has its 

drawbacks as well, e.g. more complicated measurement 

and electrode positioning. MECG is used in body surface 

potential mapping (BSPM). The most frequently used 

body surface maps are isopotential, giving a distribution 

of the potential at a specific moment, and isointegral, 

providing a distribution of the sum of potentials over a 

specified time interval. The result of a MECG 

measurement is in fact a time series of consecutive 

vectors, encapsulating data collected by all the electrodes 

at the sampling time. These vectors can be visualized 

using interpolation, by different types of isovalued lines 

or regions, also called the body surface map. Electrodes 

placed at different positions result in different data. If we 

want to obtain normalized and comparable results some 

kind of data transformation has to be performed.  

The MECG measurements deliver large amount of 

electrocardiological data for further processing. However, 

not all the observed phenomena are fully understood. The 

aim of our research is discovery of possibly useful 

knowledge, so far not routinely analyzed, from 

repolarisation phase of the heart cycle. 

.  

2. Measurement and data 

We have used the Cardiag 112.2 system (Czech 

MECG device) with 80 electrodes in 16 x 5 equidistant 

matrix. The system allows recording of standard ECG, 

vectorcardiograph and MECG. The advantage of using 

more electrodes is that we acquire more data, although 

potentially redundant, and thus mapping is more exact. If 

lower number of electrodes (30) is used additional 
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transformation of data has to be applied to correctly 

reproduce approximated equidistant maps. 

In our study, electrocardiographic, vectorcardiographic 

and BSPM recordings have been obtained from three 

groups of women, pregnant women in 36th - 40th week of 

pregnancy, women in 3rd - 6th day after delivery, and 

reference set of young healthy not pregnant women. Total 

number of women has been 88, out of which 18 have not 

been pregnant, 43 have been pregnant, and 27 after 

delivery. In Table 1 selected parameters of measured data 

mean values are shown. 

 

3. Feature extraction 

Feature extraction and feature selection are very 

important steps in the process of knowledge discovery 

and in classification systems. Proper selection of features 

may significantly influence the success rate of 

classification.  

Table 1: Selected parameters of data mean values, SD – 

standard deviation, QT – length of QT interval, QTc – 

length of QT related to RR interval, Ta – amplitude of T-

loop, Tw – angle (width) of T-loop 

Use of irrelevant and weakly relevant features can 

decrease the accuracy. The features can be selected either 

automatically or manually. Automatic selection can be 

viewed as a state space search where each state represents 

a single combination of features. The goal of the search is 

to find the state with the highest value of the evaluation 

function that characterizes the success rate of 

classification with the corresponding features. It is 

obvious that such an evaluation function is only an 

estimation of the success rate of the classification, 

because the training set is limited. The transition operator 

is feature adding or deleting. The average accuracy of 

cross-validation is usually used as an evaluation function. 

Manual selection, on the other hand, is a more or less 

intuitive process based on experience. One of the most 

important aspects of the ECG classification systems is 

reliable analysis of ECG records, which enables 

significant values to be identified on the measured signal. 

This analysis is a necessary condition for correct 

classification. We have analyzed a number of parameters 

that can be computed from the measured signals. Based 

on our previous experience with ECG signal 

preprocessing and classification [4], [5], and a number of 

experiments we have identified several parameters that 

may contain the significant information (see Table 1). 

From conventional ECG we have used the following 

parameters: length of QT segment, length of QRS 

complex, length of STend (length of segment from the 

end of S wave to the end of T wave), data referred to the 

heart rate, namely QT_rel, QRS_rel, STend_rel, using R-

R interval. From vectorcardiography we have used two 

parameters, namely amplitude of the T-loop Ta and angle 

(width) of the T-loop Tw. The amplitude of the T-loop is 

defined as the distance of the most distant point of the T-

loop from the outset of the coordinates. The angle Tw is 

the angle of the vector connecting the outset with ¼ of the 

T-loop and the vector connecting the outset with ¾ of the 

T-loop. From MECG we have used the following 

parameters: 

• maximum of T-wave, in case of noisy data 

replaced with “?” as character representing 

missing value; 

• position of maximum of T wave in time –

relatively with respect to the length of STend 

segment; 

• position of maximum and minimum of 

isopotential map in x, y coordinates; 

• values of maximum and minimum of isopotential 

map; 

• position of maximum and minimum of isointegral 

map in x,y coordinates; 

• values of maximum and minimum of isointegral 

map, summed in the STend interval. 

 Additional information is state of the patients, namely 

healthy not pregnant women – reference group (class 1), 

pregnant women (class 2), and women after delivery 

(class 3). 

 

4.  Implementation 

We have developed software tool in Matlab for BSPM 

computation, visualization and feature extraction that 

enables us to extract potentially interesting features from 

the data. The raw measured data can be shown, analyzed, 

and presented graphically in time domain as standard 

ECG plots, different body surface maps, or animated 

maps (see Figure 1). In addition, different computations 

may be performed: finding R-R interval, QT interval, 

QTc interval, spatial maximum, Tmax-Toff parameter, 

etc. The extracted feature values can be evaluated using 

various machine learning algorithms. We have chosen 

two algorithms, namely See5 [5] and J48.PART from the 

WEKA open source [6] for generation of decision trees. 

Our aim has been to acquire results in an explicit and 

 QT[ms] SD QTc[ms] SD Ta SD Tw SD 

Not pregnant 342 13 382 35.5 597 141 8.1 4 

Pregnant 322 12.8 419 39 413 151 11 8.5 

After delivery 325 11.8 413 33 426 133 12.5 8.5 
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understandable form.  

5. Results 

Although results suffer from dependency on small data 

set, and problems with medical data in general, such as 

non-heterogeneity of biological systems and noise 

induction during measurement period, some interesting 

results have been obtained. An example of a generated 

decision tree is shown in Table 2. 

We have found following interesting (important) 

differentiating features using Weka software tool [6]: 

• Description of vectorcardiographic T-loop Tw and 

Ta quite unambiguously differentiate the reference 

group from the pregnant and after-delivery groups. 

• Position of spatial maximum of isopotential map 

differentiates the group of pregnant women from 

the reference group. Position of spatial maximum 

of pregnant women has been usually found 

caudally (low in the direction of y axis) than in the 

reference group 

• Tmax-Toff parameter includes information about 

the angle of the heart axis, meaning heterogeneity 

of repolarization.  

• The groups of pregnant and after-delivery women 

are merging partially. The group of pregnant 

women that is stronger has “pulled” nearly half of 

the after-delivery group. This can be seen not only 

in Table 1 but it was also observed in [4].  

Our analysis is thus in correspondence with medical 

observations indicating that changes of electrical field of 

the heart caused by changed geometry of thorax are 

covered by other more significant changes caused by 

pregnancy and remaining for certain period after delivery; 

for example, changes of inner conditions of the body 

(hormonal changes, retaining fluids) cause changes of 

electric conductivity of tissues. 

However, we have not confirmed unambiguously 

several expected characteristics, namely extremes of 

isointegral maps, position of the extremes of isointegral 

maps. We have analyzed the original data with respect to 

these results and have come to the following conclusion. 

Measurement of both extremes is burdened by:  

• objective error of the measurement – drift of 

signal zero has higher influence on map minimum 

because most of pronounced T waves are in 

positive leads;  

• error given by current skin conductivity of the 

measured patient, this error contributes more 

significantly to increase of maximum; 

• error caused by incorrect contact electrode-skin 

At present body surface potential mapping is the most 

Figure 1: Visualization of isopotential map 
Decision tree: 
Ta <= 547.6988: 

:...TmaxToff > 37: 

: :...pozice_maxima_z_mapy03x <= 

37: 1 (3) 

: : pozice_maxima_z_mapy03x > 37: 2 

(3) 

: TmaxToff <= 37: 

: :...pozice_maxima_z_mapy08x <= 

59: 

: :...T_max_poz82 <= 0.78626: 2 

(32.6/11.5) 

: : T_max_poz82 > 0.78626: 3 

(15.4/2.9) 

: pozice_maxima_z_mapy08x > 59: 

: :...T_max_hod01 <= 378.8304: 1 (2) 

: T_max_hod01 > 378.8304: 2 (8) 

Ta > 547.6988: 

:...Tw > 14.5955: 3 (2) 

Tw <= 14.5955: 

:...T_max_hod46 > 148.9341: 2 (5) 

T_max_hod46 <= 148.9341: 

:...T_max_poz75 <= 0.7622: 2 (2.1) 

T_max_poz75 > 0.7622: 1 (14.9/1.9) 

 

Size of decision tree : 10. 

Accuracy: 79,5% 

(a) (b) (c) <-classified as 

---- ---- ---- 

18        (a): class 1 

2 42 (b): class 2 

16 10 (c): class 3 

 

Table 2: Example of acquired decision tree 
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complete visualization of the heart activity mapped on 

body surface. However its problem is the interpretation of 

the majority of measured data, with the exception of 

measurement of isopotential maps (measurement of 

differences of map values from healthy etalon). This 

study has tried to discover new relations in measured 

evaluated data that might contribute to deeper 

understanding of electrophysiological heart activity 

influenced by physiological changes of thorax geometry 

(heart position in thorax). 

 

6. Conclusions 

We have designed a new tool for visualization of body 

surface potential maps. We have developed several 

modules for further features extraction, and we have tried 

to acquire information hidden in body surface potential 

maps. Concluding from the above mentioned results we 

can state that heart changes due to pregnancy are covered 

by larger changes of conductivity of thorax caused by 

changes in the body. Further investigation that will 

provide more discriminative set of features is required for 

revealing relations between heart position and BSPM. 
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