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Abstract

A pivotal component in AEDs is the detection of ven-

tricular fibrillation by means of appropriate detection al-

gorithms. In scientific literature there exists a wide va-

riety of methods and ideas for handling this task. These

algorithms should have a high detection quality, be eas-

ily implementable, and work in real time in an AED. Test-

ing of these algorithms should be done by using a large

amount of annotated data under equal conditions. For our

investigation we simulated a continuous analysis by select-

ing the data in steps of one second without any preselec-

tion. We used the BIH-MIT arrhythmia, the CU, and the

AHA database. For a new ventricular fibrillation detec-

tion algorithm we calculated the sensitivity, specificity, and

the area under its receiver operating characteristic curve

(ROC) and compared these values with the results from an

earlier investigation of several different ventricular fibril-

lation detection algorithms. This new algorithm is based

on the Hilbert transform and outperforms all other inves-

tigated algorithms.

1. Introduction

Sudden cardiac arrest is a major public health problem

and one of the leading causes of mortality in the western

world. In most cases, the mechanism of onset is a ventric-

ular tachycardia that rapidly progresses to ventricular fib-

rillation. Approximately one third of these patients could

survive with the timely employment of a defibrillator.

Besides manual defibrillation by an emergency paramedic

in recent years, bystander defibrillation with automatic ex-

ternal defibrillators (AEDs) has also been recommended

for resuscitation. These devices analyze the electrocardio-

gram (ECG) of the patient and recognize whether a shock

should be delivered or not. Hence it is of vital importance

that the ECG analysis algorithms used by AEDs differen-

tiate well between VF and a stable but fast sinus rhythm

(SR).

To gain insight into the quality of an algorithm for ECG

analysis, it is essential to test the algorithm with a large

amount of data, which has already been annotated by qual-

ified cardiologists.

Commonly used annotated databases are Boston’s Beth

Israel Hospital and MIT arrhythmia database (BIH-

MIT), the Creighton University ventricular tachyarrhyth-

mia database (CU), and the American Heart Association

database (AHA). We used the complete BIH-MIT arrhyth-

mia and CU database, and the files 7001 - 8210 of the AHA

database [1], [2], [3].

In this paper we develop a new ventricular fibrillation

detection algorithm and compare its performance with the

results from an earlier evaluation [4] by calculating the area

under the ROC curve. We call this value “integrated re-

ceiver operating characteristic”, and denote it by IROC.

The ROC curve is given by plotting the sensitivity in de-

pendence of (1−specificity), where different points of the

plot are obtained by varying the critical threshold parame-

ter in the decision stage of the algorithm.

2. Methods: The Hilbert Transform Al-

gorithm

This algorithm (HILB) is based on a method which is

used in analyzing nonlinear signals.

From a real signal x(t) a complex valued signal z(t) is

obtained by z(t) = x(t)+ixH(t), xH(t) being the Hilbert

transform of x(t). Then z(t) = r(t) exp(iϕ(t)). Usually

the Hilbert transform is used to compute this phase ϕ(t).
Hence a two dimensional phase-space plot is generated

in the following way:

On the x-axis we plot the ECG signal x(t) and on the y-

axis we plot the Hilbert transform xH(t) of the ECG signal

x(t).
The Hilbert transform xH(t) of a signal x(t) is defined

by

xH(t) =
1

π
P.V.

∫
∞

−∞

x(τ)

t − τ
dτ, (1)

where P.V. means that the integral is taken in the sense of

the Cauchy principal value. From Equation (1) one can
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read off that the Hilbert transform can be considered as

the convolution of the functions x(t) and 1

πt
. Due to the

properties of convolution, the Fourier transform X̂H(ω) of

xH(t) is the product of the Fourier transforms of x(t) and
1

πt
. Thus for ω > 0, X̂H(ω) = −iX̂(ω) and for ω < 0,

X̂H(ω) = iX̂(ω). This means that the Hilbert transform

can be realized by an ideal filter whose amplitude response

is unity and phase response is a constant π

2
lag at all fre-

quencies ω > 0.

In our algorithm, we first down-sample the ECG data to

a frequency of 50 Hz, since we do not expect any relevant

information in the frequency region above this value. In

addition a reduced data set speeds up the calculation.

We observe that phase-space plots of random signals fill

the x-y–plane in a more or less irregular way. On the

other hand, phase-space plots of normal ECG signals al-

ways show circle like curves. Figure 1 shows a typical SR

signal from the CU database and the corresponding points

in the phase-space plot.
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Figure 1. SR episode in the ECG signal cu01 from the

CU database and corresponding points in the phase-space

plot, d = 88/1600 = 0.06.

Figure 2 shows a typical VF signal from the CU database

and the corresponding points in the phase-space plot.
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Figure 2. VF episode in the ECG signal cu01 from the

CU database and corresponding points in the phase-space

plot, d = 333/1600 = 0.21.

Based on phase-space plots (x(t), xH(t)) we differenti-

ate SR from VF. We determine the area of the plot filled

by the curve. To achieve this, we produce a 40 × 40 grid

and count the boxes visited by the ECG signal. We then

calculate a measure d defined by

d =
visited boxes

number of all boxes
. (2)

If d is higher than a certain threshold d0, we classify

the corresponding ECG episode as VF. We choose for the

threshold d0 = 0.15. The critical threshold parameter to

obtain the ROC curve is d0.

3. Results

For the new algorithm tested in this paper we used the

same prefiltering process as in [4]. The filtering process is

carried out in a MATLAB routine, called filtering.m. The

function filtering.m for preprocessing can be found on the
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site http://www2.staff.fh-vorarlberg.ac.at/∼ku/VF/

filtering.m

In this paper we chose ECG episodes with a window

length of 8 seconds. For the investigation we simulated a

continuous analysis by selecting the data in steps of one

second without any preselection.

The decision of an algorithm analyzing an episode of 8

seconds window length is assigned to the endpoint of that

interval.

The quality parameters are presented in the following

figure and tables. The perfect algorithm would have val-

ues for sensitivity, specificity, positive predictivity, accu-

racy, and IROC of 100%, assuming that the annotations

are 100% correct.

The data sets were taken from the BIH-MIT database

(48 files, 2 channels per file, each channel 1805 seconds

long), the CU database (35 files, 1 channel per file, each

channel 508 seconds long), and the AHA database (files

7001 - 8210, 40 files, 2 channels per file, each channel

1800 seconds long). Thus, the total number of decisions

per algorithm (window length = 8s) is 2 ·48 · (1805−7)+
35 · (508 − 7) + 2 · 40 · (1800 − 7) = 333 583.

Table 1 shows the values for the sensitivity, the speci-

ficity and the area under the receiver operating characteris-

tic of the new algorithm and the corresponding values for

some other algorithms investigated in [4]. A short descrip-

tion of all these algorithms can be found there too1.

Table 1. Quality of ventricular fibrillation detection algo-

rithms (sensitivity, specificity, integrated receiver operat-

ing characteristic) in per cent.

Data Source MIT DB CU DB AHA DB overall results

Parameter Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC

TCI 74.5 83.9 71.0 70.5 75.7 86.9 75.1 84.4 82

VF 29.4 100 30.8 99.5 16.9 100 18.8 100 87

SPEC 23.1 100 29.0 99.3 29.2 99.8 29.1 99.9 89

CPLX 6.3 92.4 56.4 86.6 60.2 91.9 59.2 92.0 87

HILB 86.0 97.9 74.7 85.4 84.4 95.1 83.1 96.2 95

Table 2 shows the values for the positive predictivity, the

1 TCI . . . threshold crossing intervals algorithm [5], VF . . . VF fil-
ter algorithm [6], SPEC . . . spectral algorithm [7], CPLX . . . complexity
measure algorithm [8]

Table 2. Positive predictivity, accuracy, and calculation

time in per cent for a window length of 8 seconds, calcula-

tion time in per cent of the real time of the data.

Data Source MIT DB CU DB AHA DB overall results

Parameter PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.

TCI 0.8 83.9 38.9 70.6 54.4 84.9 31.1 83.6 2.1

VF 82.4 99.9 94.5 85.2 98.9 85.7 97.7 93.0 1.9

SPEC 60.6 99.8 92.0 84.6 97.3 87.7 96.1 93.8 1.9

CPLX 0.1 92.3 52.7 80.3 60.7 86.5 40.8 89.2 2.5

HILB 6.3 97.8 59.1 83.0 78.3 93.3 67.6 95.1 1.8

accuracy and the calculation time of the new algorithm.

Figure 3 compares the ROC curves of the new algorithm

and the corresponding values for some other algorithms in-

vestigated in [4].
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Figure 3. ROC curves for investigated algorithms, blue

vertical lines at 99% and 95%.

Table 3 shows the values for the sensitivity of the in-

vestigated algorithms, if, due to an appropriate adaption of

the threshold parameters, the specificity is 95 % or 99 %,
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respectively.

Table 3. Sensitivity of ventricular fibrillation detection

algorithms in per cent for a window length of 8 seconds.

Parameter Sns. if Spc. = 95 Sns. if Spc. = 99

TCI 25.3 1.3

VF 73.4 59.7

SPEC 69.8 58.9

CPLX 38.8 5.8

HILB 84.7 74.2

4. Discussion and Conclusion

In real applications of AEDs the specificity is more im-

portant than the sensitivity, since no patient should be de-

fibrillated due to an analysis error which might cause car-

diac arrest.

Therefore, a low number of false positive decisions

should be achieved, even if this increases the number of

false negative decisions. The new algorithm HILB clearly

yields the best values for the integrated receiver operat-

ing characteristic. This implies that for any given specified

specificity the algorithm HILB will yield by far the best

sensitivity (see Figure 3). Moreover, it is the fastest of all

algorithms.
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