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Abstract

The cardiovascular system may be investigated by ob-

serving fluctuations in the heart rate, blood pressure and

rate of respiration. Its time evolution is governed by the

baroreflex control mechanism, where the sympathetic and

vagal nerves compete to increase and decrease the heart

rate respectively. A nonlinear delay-differential equation

model is constructed to describe this control mechanism

and to explore the interactions between the heart rate and

blood pressure. In this model, a time delay gives rise to the

oscillations in the blood pressure known as Mayer waves.

The model maintains an intrinsically stable heart rate in

the absence of nervous control, and features baroreflex in-

fluence on both heart rate and peripheral resistance. The

effect of respiratory sinus arrhythmia (RSA) is introduced

using a sinusoidal driving component. Clinical recordings

obtained by carefully controlling the rate and depth of res-

piration are used to test the suitability of the model for rep-

resenting the complicated physiology of the cardiovascular

system. The model is shown to be able to reproduce many

of the empirical characteristics observed in these biomedi-

cal signals, including RSA, Mayer waves and synchroniza-

tion. Key physiological parameters in the model, including

the time delay and levels of sympathetic and vagal activity,

could provide useful diagnostic information about the state

of the cardiovascular system.

1. Introduction

The human body relies on adequate control of blood

pressure as the heart pumps blood to all the vital organs.

Increased blood pressure, hypertension, indicates an in-

creased presupposition to a range of disorders including

congestive heart failure, stroke, myocardial infarction and

kidney failure. A better understanding of the dynamics un-

derlying the control mechanisms used to regulate blood

pressure may be used to facilitate improved diagnosis of

these disorders using non-invasive clinical techniques.

The electrocardiogram (ECG) can be used to extract a

time series of inter-beat time intervals, which reflect the

cardiac activity. The human cardiac system displays a

number of bio-rhythms such as (i) respiratory sinus ar-

rhythmia (RSA) whereby the heart rate increases during

inspiration [1] and (ii) Mayer waves, slow oscillations in

blood pressure with an approximate 10-second period [2].

There has been some debate about the exact source of these

Mayer waves [3]. While the most widely accepted theory

suggests that these waves are caused by the sympathetic

(delayed) feedback control of the blood pressure through

the baroreflex [2], others cite an oscillator in the central

nervous system [4].

A variety of approaches have been employed to describe

the short-term control of blood pressure. Ottesen et al.

[5, 6] provide an excellent review of attempts at modelling

the physiology of the cardiovascular system. Grodins [7]

used algebraic equations for the steady controlled heart

which can be rearranged to model mean arterial pressure

by a sixth order polynomial. DeBoer et al. [2] proposed a

beat-to-beat difference model where each heart beat is con-

sidered as a discrete event and the sympathetic feedback

from the baroreceptors is distributed over the following 2-6

beats. Madwed et al. [8] provided a descriptive model us-

ing feedback control. Ursino et al. have produced a series

of differential delay equation models to allow for changes

in the venous capacity and cardiac pulsatility (see [9] and

references therein). Seidel & Herzel [10] developed a hy-

brid model with continuous variables and an integrate and

fire mechanism to generate a discrete heart rate.

In this paper, we present a model that is capable of de-

scribing the interactions between heart rate, blood pressure

and respiration. The aim is that this model is (i) sufficiently

simple to allow for a mathematical analysis of the dynam-

ics, (ii) sufficiently complex to provide a faithful represen-

tation of the underlying physiology and (iii) provides out-

put signals for heart rate, blood pressure and respiration

that resemble real biomedical signals.
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2. Methods

First we briefly summarise the primary control mecha-

nisms that regulate the cardiovascular system and affect the

heart rate, blood pressure and respiration. Second we intro-

duce the delay recruitment model that is used to describe

the interaction between these signals. Third we describe

the biomedical signals used for assessing the model.

2.1. Control mechanisms

In the absence of feedback from the central nervous sys-

tem, the heart is known to continue beating at a rate given

by the firing of the sino-atrial node [11]. Within the cardio-

vascular system of a healthy human subject, there is an in-

tricate relationship between blood pressure and heart rate.

The heart rate may be increased by slow acting sympa-

thetic activity or decreased by fast acting parasympathetic

(vagal) activity. This competition between the sympa-

thetic and parasympathetic systems, the two opposite act-

ing branches of the autonomic nervous system, is referred

to as the sympathovagal balance. Evidence of these com-

peting mechanisms is present in the beat-to-beat changes

of the cardiac cycle [12]. A spectral analysis of the inter-

beat time intervals may be employed to quantify the effects

of the sympathetic and parasympathetic modulation of the

inter-beat intervals. The two main frequency bands of in-

terest are referred to as the Low-Frequency (LF) band (0.04

to 0.15 Hz) and the High-Frequency (HF) band (0.15 to 0.4

Hz) [13]. Sympathetic tone is believed to influence the LF

component whereas both sympathetic and parasympathetic

activity have an effect on the HF component [14].

The major effect of respiration on the cardiac control

system is understood to be via the sympathetic and vagal

efferents from the medulla, which are modulated by a res-

piratory signal. This corresponds in our model to mod-

ifying the dependence on pressure, adding a sinusoidal

term to the pressure to imitate respiration. This respira-

tory forcing is then fed back to the cardiac control system

through the baroreceptor response to blood pressure, con-

sistent with the physiology. A number of other modellers

have adopted this approach, adding a sinusoid to directly

modify the effective arterial pressure [2, 10].

2.2. The model

Following Ottesen [5], we have developed a non-

pulsatile lumped-parameter model of the systemic loop.

This loop consists of the left ventricle which pumps blood

to the arteries, capillaries, veins and back to the left ven-

tricle. The heart and pulmonary system are effectively

combined into one cardiac output term. We assume (i) a

closed system with incompressible blood, thereby conserv-

ing blood volume, (ii) compliant arteries and veins, and

Figure 1. Schematic diagram of the short-term baroreflex

cardiac control system.

(iii) the capillary system is like a resistance vessel [15].

The baroreflex system (Fig. 1) acts by detecting arterial

pressure and sending signals to the brainstem or medulla,

which responds via either parasympathetic (fast) and sym-

pathetic (slow) signals that change the heart rate and pe-

ripheral resistance of the arterioles and capillaries. In the

model, the fast-acting parasympathetic system is assumed

to be instantaneous and the slow-acting sympathetic sys-

tem is modelled as depending on the blood pressure with a

delay of τ = 3 seconds. The model also includes the in-

trinsic controlled behaviour that would be present with no

central nervous system. Indeed the resulting natural fre-

quency affects the response dynamics of the cardiac sys-

tem to baroreflex feedback.

In the absence of nervous control the sino-atrial node

will pulse at approximately h0 = 100 beats per minute.

The mean arterial blood pressure is approximately p0 =
100 mm Hg. Our model for heart rate h and mean blood

pressure p is given by the dimensionless system

εhḣ∗ =
βg1

1 + γg2

− νg2 + δ(1 − h∗),

εpṗ
∗ = µh∗ −

p∗

1 + αg1

, (1)

in which h∗ = h/h0 and p∗ = p/p0 are dimensionless

heart rate and blood pressure, respectively, and an overdot

denotes differentiation with respect to dimensionless time

t∗ = t/τ . The functions g1 and g2 are defined by

g1 = g(p∗
1

+ r1),

g2 = 1 − g(p∗ + r2), (2)
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where

g(p) =
1

1 + pn
,

r1 = A1 sin{2πfrτ(t∗ − 1) − φ},

r2 = A2 sin{2πfrτt∗ − φ}, (3)

and the notation p∗
1

denotes the delayed function p∗(t∗−1).
Equations (1) may be viewed as follows: for ḣ∗, the

terms represent β-sympathetic, vagal, and intrinsic (sino-

atrial) response; for ṗ∗, the terms represent mechanical in-

flation by the heart pump action, and the α-sympathetic

response. The Hill function g(p) represents the pressure-

dependent baroreceptor control. The default values used

by Fowler and McGuinness [15] were α = 1.3, β = 0.3,

εh = 0.18, εp = 0.3, ν = 0.4, δ = 1, µ = 0.5, γ = 0.2,

n = 3. The influence of respiration is controlled by the am-

plitudes A1 and A2 (dimensionless), frequency fr (s−1),

and phase lag φ (dimensionless) of the response; we take

φ = π.

2.3. Biomedical signals

An electrocardiogram (ECG) signal was used to mea-

sure the electrical activity of the heart. By detecting the

R peaks of the ECG, a time series of interbeat intervals

RR was obtained. These were then used to determine the

instantaneous heart rate, h = 60/RR beats per minute

(bpm). The respiration rate was carefully controlled by the

subject breathing at rates of 6, 10 and 20 bpm correspond-

ing to frequencies of 0.1, 0.17 and 0.33 Hz respectively. A

thermistor recording of airflow temperature was also used

to measure and confirm the rate of respiration.

3. Results

Figure 2 shows the evolution of the heart rate and blood

pressure with time for the paced breathing experiments.

The contributions of RSA and Mayer waves can be seen in

these time series. Certain features are evident in the exper-

imental results, and it is with these that we wish to confront

the model. The principal features are that the mean blood

pressure stays close to 100 mm Hg and the mean heart rate

stays close to 65 beats per minute. Additionally, heart rate

responds directly to ventilation, but the blood pressure is

hardly affected. The heart rate shows Mayer waves, partic-

ularly at the high forcing frequency, but the blood pressure

shows little in the way of oscillation, except at low forcing

frequency, where there is some effect of resonance. In fact,

the blood pressure shows symptoms of longer term varia-

tion which we cannot hope to simulate with this model.

Our strategy in confronting the data in Figure 3 is to

mimic these features. We have done so by hand, choos-

ing parameter values by searching manually. To produce

Figure 2. Clinical recordings of heart rate (lower signals)

and blood pressure (upper signals) during paced breathing

at (a) 6, (b) 10 and (c) 20 breaths per minute.

the figures shown in Figure 3 took less than a day, but the

practice indicates that it is very far from optimal. It is less

obvious how to find a useful automated procedure.

With h0 = 100 bpm and p0 = 100 mm Hg, a steady

heart rate of 67 beats per minute and blood pressure of 100

mm Hg corresponds to values p∗ = 1 and h∗ ≈ 2

3
. We

have thus chosen µ and ν in order that these steady states

are fixed, thus

µ ≈
3

2 + α
, ν ≈

2β

2 + γ
+

2δ

3
. (4)

With µ and ν fixed in this way, we vary the other pa-

rameters as follows. The fact that p does not respond to

the respiratory forcing suggests that (bearing in mind that

µ ∼ 1/α) we need to have αεp large. We also tighten con-

trol of p by increasing the Hill exponent n. In order to be

close to the instability threshold where Mayer waves are

generated, we need β (and thus also ν ∼ β) to be large.

Fine tuning of the forcing amplitudes to mimic the ampli-

tude of both forced and resonant Mayer waves can be done

by altering δ and A2. Figure 3 shows the results of simula-

tions of the model using parameter values εh = 3, εh = 1,

α = 15, β = 10, γ = 0.2, µ = 0.18, ν = 9.63, n = 8,

A1 = 0, φ = π, τ = 3 s, for values fr = 6, 10, 20 min−1,

in which respectively we also put A2 = 0.005, 0.005 and

0.003, and δ = 0.85, 0.85 and 0.8. The simulations show

a reasonable resemblance to the heart rate, and also indi-

cate a lack of response of blood pressure. Note that the

parameters are very different from the default values.

4. Conclusion

The exercise of confronting a model with real data is an

illuminating one. It appears possible to begin to approach
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Figure 3. Blood pressure (top curves) and heart rate (lower

curves) obtained by solving the model equations (1) for (a)

fr = 6 bpm, (b) fr = 10 bpm and (c) fr = 20 bpm. See

text for model parameter values.

the calibration of a model with real physiological data, but

although we think the agreement of the model with the data

is reasonable, it requires stretching of the parameters be-

yond their acceptable boundaries. It is also the case that in

such extreme parameter régimes, the model is liable to un-

dergo large oscillations (which we have not shown) and to

be very sensitive to the precise choice of parameter values.

For model validation, this raises serious issues of compat-

ibility with real physiological constraints, and provides a

compelling challenge for the future.
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