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Abstract

The behaviour of impulse propagation in the presence

of non-excitable scar and boundaries is a complex phe-

nomenon and induces pathological consequences in car-

diac tissue. In this article, a geometrical configuration is

considered so that cardiac waves propagate through a thin

strand, which is connected to a large mass of cells. At

this interface, waves can slow down or even be blocked

depending on the width of the strand. We present an ana-

lytical approach leading to determine the blockage condi-

tion, by introducing planar travelling wavefront and circu-

lar stationary wave. Eventually, the influence of the tissue

geometry is examined on the impulse propagation velocity.

1. Introduction

Reentry is the major mechanism of life-threatening ven-

tricular arrhythmias associated with myocardial infarction

scar [1]. In abnormal conditions, electrical cardiac wave-

front may be stopped by, for instance, electrically non-

excitable scar or functional block, which may induce a

reentry circuit in pathological endocardial tissue. Never-

theless, normal geometrical features may also imply vari-

ations of the conduction properties, as accessory atrioven-

tricular pathways, consisting of narrow strands of myocyte

coursing from atrium to ventricle [2]. Therefore, the ar-

chitecture of the cellular network forming the myocardium

[3, 4] and the geometry of excitation wavefront [5, 6, 7] are

important to characterize the impulse propagation. Math-

ematical models [8, 9] and nonlinear dynamics are widely

used to study the impulse (action potential) propagation in

cardiac cells [10, 11, 12]. Among them, one of the major

model is described by the FitzHugh-Nagumo (FHN) equa-

tion [13], which allows analytical approaches. The goal of

this paper is to study the propagation condition in a sys-

tem composed of a thin strand of myocytes connected to

a large mass of cells. This geometry is modelled using a

modified version of the FHN equation. We show that, at

the interface of the two parts of the system, the shape of

the waves goes through a geometrical modification, which

can lead to a decrease of the velocity up to a blockage phe-

nomenon. Eventually, we determine the optimal width of

the strand which minimizes the time delay at the interface.

2. Methods and results

We consider a thin sheet of myocardium such as a two-

dimensional model is used to describe the impulse prop-

agation. The medium is assumed to be isotropic and its

schematic design is sketched in Fig. 1. In the bounded do-
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Figure 1. Schematic diagram of the geometry of the tissue.

l1 (resp. l2) is the width of the domain (1) (resp. domain

(2)). Arrow indicates direction of propagation.

main, the corresponding equations modelling this system

are:


















∂V

∂t
= D∆V − f(V ) − W

∂W

∂t
= ε(V − γW ) ,

(1)

where D is the diffusion parameter, t is the time, ∆ is the

continuous Laplacian operator, V is the transmembrane

voltage. W is the recovery variable, which indicates the

capacity of the medium to revert to its resting state after

the propagation of impulsions, due to potassium current

and the nonlinear function f(V ) represents the behaviour

of the sodium current. Usually, f(V ) is a cubic polyno-

mial function, but a common simplification is to approxi-

mate this function by a piecewise linear expression. Fur-

thermore, characterizing the velocity of the action potential

corresponds to determine the velocity of the leading edge

of this wave, which is given by the condition W (t) = 0 ∀t.
The system (1) becomes

∂V

∂t
= D∆V − [V − H(V − α)], (2)
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where α is a threshold between the passive and the active

role of the sodium conductance (0 < α < 1/2) and H is

the Heaviside step function. This system is completed by

the Neumann boundary conditions, so that

∂V

∂n
= 0 , (3)

where ∂
∂n

denotes the outer normal derivative at the bound-

ary of the bounded domain. To investigate a propagation

at the interface, we initiate a wavefront in domain (1). Due

to the width of the strand, we assume this wave to be pla-

nar and propagating towards domain (2). The symmetry

induced by this choice of configuration allows us to reduce

the system to continuous one-dimensional medium so that

it can be described by the following bistable equation,

∂V

∂t
= D

∂2V

∂x2
− [V − H(V − α)] . (4)

Introducing the travelling frame coordinate ξ = x − ct,
where c is the front velocity, eq. (4) can be written so that

D
∂2V

∂ξ2
+ c

∂V

∂ξ
− [V − H(V − α)] = 0 , (5)

which yields, due to C0 continuity, the propagating solu-

tion in domain (1):
{

V (ξ) = αeλ2,1ξ, if V < α
V (ξ) = (α − 1)eλ1,2ξ + 1, if V ≥ α ,

(6)

where λ1,2 = − c
2D

± 1
2

√

( c
D

)2 + 4
D

.

Note that in [14], the stability of this kind of solution in

an infinite medium has been analyzed. Note also that this

solution has been observed and confirmed by numerical

simulations.

When this wave reaches the interface, a symmetry breaking

occurs, depending on the width l1 (resp. l2) of the domain

(1) (resp. domain (2)):
• if l1 ≤ lc ≪ l2, the incoming wave is pinned at the

interface, where lc is a critical width to be determined,

• if l2 > l1 > lc, the wave is transformed in either circular

(l1 small) or elliptic one (l1 large),

• if l1 = l2, we observe a planar propagation in domain

(2), according to (6).
In the blockage situation, numerical simulations show that

the shape of the standing wave is circular. Therefore, it

corresponds to the existence of a circular standing solution

in domain (2).

In order to determine the critical value lc, we need to ex-

press the standing solution in the case of a circular wave.

Because of this circular symmetry, we look for a time in-

dependent solution V (r) with r radial coordinate, leading

to express eq. (2), so that

D(
∂2V

∂r2
+

1

r

∂V

∂r
) = V − H(V − α). (7)

Introducing ρ = r

√

1

D
eq. (7) becomes

(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
) = V − H(V − α) . (8)

Let ra be defined so that V (ra) = α.

• if V < α, eq. (8) becomes
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
− V = 0 and

the standing solution is

V (ρ) = A1I0(ρ) + B1K0(ρ) , (9)

where I0 and K0 represent the modified Bessel functions

of the first and second kind respectively.

• if V ≥ α, eq. (8) becomes
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
− V + 1 = 0

and the standing solution is

V (ρ) = 1 + A2I0(ρ) + B2K0(ρ). (10)

We impose the following conditions leading to find the

constants A1, B1, A2 and B2:

• V (r → ∞) = 0 leading to A1 = 0.

• V (r = 0) = V0 > α leading to B2 = 0. V0 is the

maximal amplitude of an initial condition corresponding

to r = 0.

Eventually, due to C0 continuity, the standing wave solu-

tion is



























V (r) =
αK0(

r√
D

)

K0(
ra√
D

)
, if r ≥ ra

V (r) = 1 + (α − 1)
I0(

r√
D

)

I0(
ra√
D

)
, if r < ra ,

(11)

where ra is determined by:

ra =
√

DI−1
0 (

α − 1

V0 − 1
). (12)

An illustration of such a wave is presented in Fig. 2.

The standing solution given by eq. (11) allows the de-

termination of the critical width lc. Indeed, the blockage

situation corresponds to the case where an incoming planar

propagating wave in domain (1) gives birth to the circular

standing wave in domain (2). Like the Huygens princi-

ple in optical scattering, each elementary cell is assumed

to give rise to a circular wave, which leads in a first ap-

proximation to a global circular propagating wave flowing

in domain (2). Recognizing that initiation of a travelling

wave in domain (2) requires a minimum area where the
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Figure 2. Cross-section of the standing wave with D = 1,

α = 0.2, ra = 0.8186 and V0 = 0.319.
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Figure 3. lc versus α (D = 1). Theoretical results (cf

eq.(14)) in continuous line, numerical results in dashed

line.

cells are excited (i.e. V > α), we assume that this area,

in the case of blockage is the location of the transformed

planar wave with a null velocity and where V > α. As

c = 0, it implies

V (r) = (α − 1)e
√

1

2D
(r−rc) + 1 , (13)

where rc = lc/2 = ra. When r ≥ ra (V ≤ α) the spatial

distribution corresponds to the previously defined circular

standing wave (first equation of system (11)). The C0 and

C1 conditions of continuity lead to determine lc from rc

implicitly obtained by

(α − 1)

√

1

2D
+

αK1(rc

√

1
D

)

K0(rc

√

1
D

)
= 0. (14)

A comparison between this theoretical prediction and nu-

merical simulations shows a good match between them as

illustrated in Fig. 3 (based on a finite difference scheme

using a 4th order Runge-Kutta on a 100 ∗ 100 mesh).

Besides the numerical confirmation of the blockage phe-

nomenon when l1 ≤ lc, numerical simulations indicate

that the emergence of propagating wave in domain (2) in-

duces a time delay due to the transformation of the planar

travelling wave to a non-zero curvature wavefront. Actu-

ally, this delay is required so that cells reach the threshold

excitation, as observed experimentally [2]. In this section,

we present a numerical study showing the relationship be-

tween velocity, intrinsic parameters of the model and geo-

metrical features. The basic morphological features of the

transition region between a domain (1) and a domain (2)

are depicted on Fig 4, where l is the width of the do-
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Figure 4. Schematic diagram of the geometry of the tissue.
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Figure 5. Wavefront velocity versus the width of the cor-

ridor.
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Figure 6. Time ta versus the width of the corridor.

main (1), Vc is the wavefront velocity between two cells in

the domain (1), Vo is the wavefront velocity between two
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Figure 7. Propagation.
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Figure 8. Blockage.

cells in the domain (2) and Vt is the wavefront velocity be-

tween one cell in the domain (1) and a second cell in the

domain (2). As previously described, we initiate a planar

wavefront in the corridor travelling towards the large area.

Fig. 5 shows the different velocities of the wavefront when

α = 0.4 and D = 0.5, in function of l (expressed in cell

number). The results indicate that the velocity of the circu-

lar wave in domain (2) depends on the width l of the strand.

The width l of the strand changes the circular wave curva-

ture. There exists a critical value lc of l below which the

wavefront fails to propagate through the subdomains inter-

face, as shown in Fig. 8. When l is large enough, velocities

are equal and the wavefront is no more influenced by the

interface. Between these two cases, the symmetry break-

ing implies a time delay corresponding to the geometrical

transformation of the wave from a planar to a non planar

wavefront (see Fig. 7 for instance, where a circular wave

appears just after the transition region). Let ta be the nec-

essary time needed to the wavefront to cross the interface

so that

ta =
dt

Vt
− do

Vo
− dc

Vc

do

Vo
+ dc

Vc

(15)

with di, the distance between the different parts of the

medium for which the velocity is Vi (i={t,o,c}). Fig. 6

shows that this overall delay can be either positive or neg-

ative depending on the value of l. Note that delays may

imply reentrant arrhythmias due to a lack of synchronicity

between wavefront coming from different pathways. Our

results indicate that, besides the case of large corridors,

there exists an optimum width lopt around which overall

delays are negligible (see Fig. 6).Therefore, there is a pos-

sible relationship between length and width of corridors

preventing dramatic changes of cardiac activity.

3. Discussion and conclusions

In this study, an analytical solution of travelling front

in the case of the planar propagation has been deter-

mined. The criterion for the initiation of the circular waves

has been investigated, based on the existence of standing

waves. We showed that the existence of the standing wave

prevents the propagation. Again, this breakdown depends

not only on the nonlinearity threshold and on the diffu-

sion coefficient but also on the geometrical morphology

of the cardiac syncytium and on the form of the excita-

tion wavefront. We suggest that this work could be applied

to avoid the reentry phenomena. In other words, our re-

sults could modify the strategies used during arrhythmia

ablation procedures. Indeed, precise radiofrequency appli-

cations inside scar tissues could improve conduction ve-

locity in other areas and prevent reentries [15]. It would

correspond to fix the optimized width so that the delay be-

comes negligible, which would assures synchronicity be-

tween waves coming from different pathways.
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