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Abstract 

Heart auscultation which is the interpretation of 

sounds produced by the heart is a fundamental tool in the 

diagnosis of heart disease. It is the most commonly used 

technique for screening and diagnosis in primary health 

care. The efficiency of this diagnosis can be improved 

considerably by using modern digital signal processing 

techniques. This study aims at utilizing the discrete 

wavelet packet transforms in early detection of an Aortic 

Stenosis (AS) using heart sound data collected at  Sussex 

University Hospital in England. From the data analysis, a 

criteria has been proposed for the detection of the AS 

disease from the heart sound data. 

1. Introduction 

Development of auscultation techniques for the 

diagnosis of heart disease and disorders is still growing. 

Experience gives the cardiologists the ability to detect 

abnormalities such as the presence of murmurs, which 

may indicate a pathological condition. The description of 

murmurs is an important task and, when auscultation is 

carried out, the cardiologist's notes are the sole record of 

the patient's condition. These facts are subjective and can 

be interpreted in different ways. In order to eliminate 

subjectivity a signal processing method is needed for the 

representation of the first heart sound S1, second heart 

sound S2 and murmurs. Since 1991, many researchers 

have shown that continuous wavelet analysis can provide 

an adequate representation of the primary heart sounds. 

For most applications, however, the goal of signal 

processing is to represent the signal efficiently with fewer 

parameters. The use of discrete wavelet transform (DWT) 

can be valuable. This paper considers the representation 

of murmurs by exploring the use of DWT and discrete 

wavelet packet transform (DWPT) using the wavelet base 

Daubechies ‘db4’.  

The paper is structured as follows. Section 2 presents 

background information about heart sound and 

Auscultation. An overview of wavelet analysis is given in 

Section 3. Description of the data and the methodology 

used in the analysis are discussed in Section 4. Section 5 

discusses the results obtained. Finally, Section 6 

concludes the paper.  

2. Heart sound and auscultation 

The technique of listening to the sounds produced by 

organs and vessels of the body is called auscultation. 

Phonocardiography (PCG) consists of the registration of 

the vibrations originating in the heart and associated 

blood vessels in order to obtain a visual record of the 

phenomena. Many studies attempted to extract features 

from heart sounds in order to understand their 

mechanisms as well as aiding in diagnosis. The 

techniques for recording and analysis have been changing 

as new electronic devices and signal processing 

techniques have become available. 

The heart sounds are those generated as a result of 

mechanical vibrations due to contraction and relaxation of 

the heart cavities. The heart sounds have been described 

and classified, basically in terms of duration and pitch, in 

order to identify them. The first and the second heart 

sounds are related to complete closure of the 

Atrioventricular (AV) and semilunar valves, respectively 

(Figure 1a). The first heart sound (S1) marks the 

beginning of mechanical systole. It consists of two 

intense high-frequency bursts of vibrations at the time of 

the AV closure and a few variable low-intensity 

vibrations [1]. The two components are known as M1 and 

T1 corresponding to the mitral and tricuspid components. 

The second heart sound (S2) marks the beginning of 

mechanical diastole. It consists of two high-frequency 

components that relate to the closure of the aortic and 

pulmonic valves, A2 and P2 respectively. The detection 

of the two components, their intensity, and time relation 

provide valuable diagnostic clues [1-3]. 

Murmurs can be pathologic, when they are produced 

by an abnormal heart (Figure 1b). The most common 

symptoms are congestive heart failure, angina pectoris, 

and syncope. When the symptoms of aortic stenosis 

appear in a patient they indicate the point at which the left 

ventricle can no longer generate the elevated systolic 

pressure required. Among the valvular diseases, the 

patients with aortic stenosis show the shortest survival. 
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 The average survival after the development of 

symptoms in individuals with untreated aortic stenosis is 

1.5 to 3 years [4]. Sudden death may also occur, 3 to 5 % 

of patients may die suddenly during the asymptomatic 

period as well as in 15-20 % of symptomatic patients [5]. 
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Figure 1. a) Normal heart Beat 
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Figure 1. b)Heart Beat for AS patient. 

 

 

3. Wavelet analysis 

The continuous wavelet transform maps a one-

dimensional time signal to a two–dimensional time-scale 

joint representation. The time bandwidth product of the 

continuous wavelet transform output is the square of that 

of the signal. For most applications, however, the goal of 

signal processing is to represent the signal efficiently with 

fewer parameters. The use of the discrete wavelet 

transform (DWT) can reduce the time bandwidth product 

of the wavelet transform output. Performing a wavelet 

transform consist of convolving the signal with time 

shifted and dilated. The result of wavelet transform will 

be a set of coefficients, which are function of time and 

scale. These coefficients can be used to form a set of 

features that unambiguously characterize different types 

of signals [6].  

 

 

H 1  L 1  

H L 2  LL 2 

H LL 3 LLL 3  

D W T  

 
Figure 2. (a) : Filter bank representation of the DWT 

decompositions. [10] 
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Figure 2. (b) Filter bank representation of the DWPA 

decompositions. [10] 

 

The dilation function of the DWT can be represented 

as a tree of low and high pass filters, with each step 

transforming the low pass filter into further lower and 

higher frequency components as shown in Figure 2. (a). 

The original signal is successively decomposed into 

components of lower resolution, while the high frequency 

components are not analysed any further. In contrast with 

the regular DWT, the discrete wavelet packet analysis can 

significantly increase the versatility and power of the 

discrete wavelet transform. Unlike the DWT, which only 

decomposes the low frequency components, the discrete 

wavelet packet analysis utilises both the low frequency 

components, and the high frequency components [7]. 

From these frequency components and using entropy-

based criterion, a method for choosing the optimum 
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scheme for the identification of Aortic Stenosis Disease 

can be developed. 

 

Entropy is a common concept in signal processing. 

Classical entropy-based criteria describe information 

related properties for an accurate representation of a given 

signal [8]. There are many entropy criteria among them: 

Shannon entropy, energy entropy, norm entropy and 

threshold entropy [9]. In this study, norm entropy is used 

to extract some features from the PCG signals. 

4. Data description and methodology 

Representation of murmurs from pathologic and non-

pathologic subjects has been acquired from 20 patients 

with aortic stenosis and with different degrees of valve 

competence. All data has been collected over a number of 

years from patients at the Brighton and Sussex University 

Hospital using digital stethoscopes built at the University 

of Sussex. The PCG data is collected at a sampling 

frequency of 4096 Hz.  

 

 
Figure 3. General procedure for the identification of 

aortic stenosis disease 

 

The procedure followed in the identification of aortic 

stenosis disease can be divided into three processes as 

described in Fig. 3. The first step in processing the PCG 

signals is to clean it from noise associated with PCG 

systems. Noise is caused by breast sounds; contact of the 

stethoscope with skin, ambient noise that may corrupt the 

heart sounds [11]. The data is filtered with high-pass 

Butterworth filter to eliminate noise. The Butterworth 

filter is selected because it has the least steepness of the 

amplitude response in the transition region. In the second 

stage, the DWPT (Fig. 2. b) is used to extract features that 

can be useful in the classification stage. The wavelet base 

Daubechies ‘db4’ is used since it has oscillations very 

similar to those of a PCG signals. In the last step, the 

norm entropy-based criterion is used for the classification 

of PCG signals.  

5. Results and discussion  

The PCG signals were normalized in energy to take 

into account the disparity in magnitude due to the 

different amplification used during acquisition as well as 

the variation induced by the lead sites. We determine the 

DWPT coefficients at level 6 for all nodes k=0,1, 2,.., 64. 

For DWPT level 6, the frequency band is divided into 

equal interval of length 32 Hz. Each node covers a 

frequency band, for example the 1
st
 node cover the 

frequency range 0 to 32 Hz, the second node covers the 

frequency range 32 to 64 Hz and so on. The frequency 

bands that are not very prominent in the original signal 

will have very low amplitudes, and these bands can be 

ignored without major loss of information. For the PCG 

signals, it is sufficient to study its behavior for the 

frequency range 30-256Hz which corresponds to DWPT 

nodes k=2, 3, …, 8. Then the entropy is computed at each 

node but at four time intervals: 

τ1: Time duration of S1 sound 

τ2: Time duration of S2 sound 

τ12: Time interval between S1 and S2 

τ21: Time interval between S2 and the next S1 

Let’s denote by E1, E12, E2 and E21 the entropy 

computed for the time intervals τ1, τ12, τ2 , and τ21 

respectively. An example of the variation of E1, E12, E2 

and E21 for each frequency band is shown in Figures 4 

and 5. 
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Figure 4. Typical Norm Entropy for a normal PCG signal. 
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Figure 5. Typical Norm Entropy for a AS PCG signal. 

 

The variation of the entropy with respect to the time 

interval and for each frequency band is studied for all the 

available data in order to determine some criteria to 

distinguish between normal and aortic stenosis signal.  

PCG 

Signal 

Data 

Cleaning 

Feature 

Extraction 

Features 

Classification 

669



 

 

It is observed that for normal data beat, E1 is larger 

than E2 and E12 and E21 are generally smaller for the 

frequency bands 32 to 128 Hz. This result is expected 

since the normal PCG signal has higher energy during the 

heart sound S1 and S2 which corresponds to higher value 

of E1 and E2. In addition, the amplitude of E1 and E2 is 

highest in the band 32-64 Hz, then it decreases 

respectively in the band 96-128, 64-96, and 128-160Hz. 

For the frequency band 128-255 Hz, the entropy values 

are generally small. 

For the aortic stenosis data, it is noted that E1 is larger 

than E12 and E2 and E21 are generally smaller for the 

frequency bands 32 to 256 Hz. This indicates that the 

signal has more energy between the heart sound S1 and 

s2 due to systolic mummer. Moreover, the amplitude of 

E1 and E12 is highest in the band 32-64 Hz, and then it 

decreases respectively in the band 96-128, 64-96, and 

128-160Hz. For the frequency bands 160-256 Hz, the 

value of E1 and E12 is comparatively higher than that of a 

normal PCG signal. 

From these observations, we can propose the following 

criteria. If E1 is larger than E2 and both are larger than E12 

and E21, then the heart sound signal is normal. If E1 is 

larger than E12 and both are larger than E2 and E21, then 

the heart sound signal has the symptom of aortic stenosis 

disease. 

 

6. Conclusion  

Heart auscultation can be improved considerably by 

using modern digital signal processing techniques. This 

study utilizes the discrete wavelet packet transforms in 

early detection of an Aortic Stenosis(AS) using heart 

sound data collected at  Sussex University Hospital in 

England. From the analysis of the data, a criteria has been 

proposed for the detection of the AS disease from the 

heart sound data. However, the number of data is limited 

and more is needed to validate the proposed criteria. 

 

References 

[1] Braunwald E. (1984): Heart Disease, second edition, 

Philadelphia Saunders. 

[2] Tilkian A. G., Conover M. B. (1993): Understanding Heart 

Sounds and Murmurs with an Introduction to Lung Sounds, 

third edition, Saunders. 

[3] Leatham A. (1975): Auscultation of the Heart and 

Phonocardiography, second edition, Churchill Livingstone. 

[4] Ahumada G. G. (1987): Cardiovascular Pathophysiology, 

Oxford University Press. 

[5]  Schlant R. C. and Alexander R. W. (1995): The Heart, 

eighth edition, McGraw Hill. 

[6] V. Giurgiutiu, A. Cuc, P. Goodman “Review of vibration-

based helicopters health and usage monitoring methods”, 

55th Meeting of the Society for Machinery Failure 

Prevention Technology, Virginia Beach, VA, April 2001.  

[7] J. Altmann and J. Mathew, “Multiple band-pass 

autoregressive demodulation for rolling-element bearing 

fault diagnosis”, Mechanical Systems and Signal 

Processing, Volume 15, Issue 5, pp. 963-977, September 

2001  

[8] R. R. Coifman and M. V. Wickerhauser “Entropy-based 

algorithm for best basis selection”. IEEE Trans. On 

Information Theory, 38, pp. 713-718, March 1992. 

[9] M. Misiti, Y. Misiti, G. Oppenheim, J. M. Poggi ,” Matlab 

wavelet toolbox User’s Guide”, The MathWorks, Inc., 

2001. 

[10] G. Noel , J. Chebil , M. Mesbah M., M. Deriche M. and J. 

Mathew, “ Diagnosis of faulty ball bearing using wavelet 

decomposition”, Proceedings of The Tenth Asia-Pacific 

Vibration Conference (APVC 2003), Gold Coast, 

Australia, 12th - 14th November 2003, pp.520-525. 

[11] S. R. Messer, J. Agzarian, and D. Abbott, “ Optimal 

Wavelet Denoising for Phonocardiograms”, 

Microelectronics Journal 32 , pp. 931-941, 2001. 

 

Address for correspondence 

 

Dr. Bassam Al-Naami 

Department of Biomedical Engineering  

The Hashemite University  

Zarqa- Jordan 

b.naami@hu.edu.jo 

670


