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Abstract

A recurrent problem encountered in many algorithms

proposed to detect and segment ECG waves is the adjust-

ment of the numerous parameters used. This work presents

a method to optimize these parameters with an Evolution-

ary Algorithm (EA). The signal processing chain contains

a filter to remove baseline wandering, a QRS detector (Pan

& Tompkins) and a wave segmentation step based on the

Wavelet-Transform (WT). The EA adjusts the parameters

of the segmentation step in order to minimize the result of

a cost function which measures how close the detector is

from characteristic points annotated by a cardiologist. Re-

sults obtained with the QTDB are compared with other ap-

proaches of wave segmentation for which thresholds have

been experimentally defined. EAs have shown to be an ef-

fective method to solve this complex problem of multiob-

jective optimization.

1. Introduction

Main ECG waves (P, T waves and the QRS complex)

are important sources of information to evaluate cardiac

pathologies. Automatic ECG wave delineators supply fun-

damental features, which can be used by the cardiologist

to formulate hypotheses on the underlying physiological

phenomena, and are particularly convenient for long-term

monitoring or the analysis of Holter recordings. Perform-

ing a reliable detection is a challenging task, partly due

to the fact that: i) the ECG can present a low signal-to-

noise ratio (SNR), ii) numerous morphologies exist, even

for healthy subjects, iii) there is no universal definition of

where the boundaries of each wave are located (specially

for T-waves). In the last decade, different WT-based ECG

delineators have been proposed, providing interesting re-

sults compared to other approaches [1, 2, 3, 4]. Indeed,

this multi-scale approach, which permits to attenuate noise

at rough scales and then to refine the candidate wave po-

sitions with the help of finer scales, usually provides a ro-

bust detection. However, a typical WT-based delineator for

ECG waves requires more than 15 parameters (time win-

dows where these waves are searched for, threshold def-

initions for slopes and wave amplitudes...). Since these

algorithms work in the time-scale domain, a priori infor-

mation, like candidate wave positions, is difficult to use

and setting the value of all these parameters is not straight-

forward. In general, the parameters of these algorithms are

experimentally defined in order to produce:

• a low probability of wave detection error

• a small detection jitter with respect to cardiologist anno-

tations, particularly for specific points such as Pon, Ppeak,

Poff, QRSon, QRSoff, Tpeak and Toff.

In this work, we present an optimization scheme, based

on an EA, and apply it to find the set of parameters that

maximize the performance of a WT-based ECG wave de-

lineator, with respect to the above-mentioned criteria. The

first section of this paper describes the method, with details

on the signal processing chain that carries out the detection

and a presentation of the optimization process. The second

section provides results obtained with the QTDB [5]. The

last section gives some concluding remarks.

2. Method

2.1. Detection algorithm

The processing chain of the ECG wave delineator can

be decomposed into three stages. The first stage makes use

of a filter to remove baseline drift [6]. In the second stage,

a sequence of N QRS detection instants τi, i = 1, ...., N
is obtained, by applying the Pan & Tompkins algorithm

[7]. Finally, the third stage performs wave segmentation

with a WT method, based on the work of Martinez et al

[2]. This work is focused on the optimization of this third

stage, which employs 30 parameters, and is the crucial part

of the segmentation algorithm. A synthetic description of

this stage is presented below.

The temporal support of each individual beat i, Bi(n)
is obtained from the studied ECG lead X(n) by applying

a fixed-width window Bi(n) = X(τi − 360ms, ..., τi +
900ms). A wavelet decomposition is performed on each

segment Bi, with a set of low pass and high pass filters

implemented in a filter bank. It is a typical dyadic decom-

position, excepted that the signal is not subsampled after

0276−6547/05 $20.00 © 2005 IEEE 707 Computers in Cardiology 2005;32:707−710.



Figure 1. Filter bank, W2k are the output of the filter at

scales 2k (k = 1 to 4), W20 is the original beat.

each high pass/low pass filter, to preserve a good temporal

resolution. A schematic diagram of this filter bank imple-

mentation is presented in figure 1. The mother wavelet is a

quadratic wavelet and can be identified as the derivative of

a Gaussian. This wavelet proved to be useful to character-

ize ECG beats and has already been applied in [1, 2].

Waves are detected from the WT decomposition in the

following order: R, S, Q, T, P. Detection of the P, Q, S and

T waves roughly follow the same process:

• Temporal support definition: time windows are defined

and referenced either from the R wave (for P, Q and S

waves) or from the S wave (for the T wave). Time win-

dows for P-wave and T-wave detection depend on the pre-

vious RR interval (thresholds P RR and T RR). T1X/P1X

are the left bounds of these windows and T2X/P2X are the

right bounds. X is the index that changes in function of the

RR. R1 and R2 define the temporal support for the R wave.

• Detection of WT maxima (only for P and T wave): the

detection of all maxima, exceeding a given threshold ǫ(P,T )

is performed inside the defined temporal support of scale

4. These thresholds are proportional to the power at scale

4. If there are no maxima exceeding ǫ(P,T ), it is considered

that the wave cannot be detected.

• Slope analysis: significant slopes for each wave are de-

tected. The amplitude of the slope has to be higher than a

threshold γQRSpre,QRSpost,T,P , proportional to the maxi-

mum slope in the corresponding time window.

• Onset, offset and peak detection: wave onset

and offset are detected with respect to a threshold

ξ(QRSon,QRSend,Ton,Tend,Pon,Pend), relative to the am-

plitude of the first or last significant slope. Peaks are de-

fined at the instant of zero-crossing, found in the lower

scale between the slopes associated with wave onset and

offset.

The two first scales, W21 and W22, which have a quite

high frequency content, are used to detect S and Q waves

as well as QRSon and QRSoff (W21 for S and Q peaks

and W22 for significant slopes, QRSon and QRSoff). The

highest scale, W24 is used to delimit the P and T waves

(Pon, Poff, Toff) whereas their peaks are found on W23.

Figure 2 shows an example of T-wave segmentation for
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Figure 2. T wave detection and scales W20, W23, W24

a sinus beat. The upper panel presents the segment to be

analyzed Bi=W20, the middle and lower panels show the

scales used for T-wave segmentation, W23 and W24, re-

spectively. Vertical lines on W24 represent the temporal

support defined to start T wave segmentation. The stars on

W24 are the detected significant slopes and the star at W23

is the zero-crossing corresponding to Tpeak.

The performance of this approach depends heavily on

the correct definition of thresholds ǫ, γ, ξ for each wave

and on the definition of the temporal search windows. All

these parameters are presented in Table 1. The next section

describes a method based on an evolutionary algorithm to

optimize these parameters.

2.2. Parameter optimization method

The objective here is to adjust the parameters of the de-

tection algorithm so that detected peaks and wave bound-

aries are nearly the same as those manually annotated by

cardiologists and stored in a database. This optimization

can be performed by defining an error function that takes

into account both wave detection performance and the de-

tection jitter for each characteristic point (Pon, Poff, Ton,

etc.). Standard gradient-based methods cannot be used in

this context, mainly because of the presence of threshold-

comparisons that will lead to discontinuous error func-

tions. Stochastic search methods, such as evolutionary al-

gorithms, are particularly adapted to this problem.

EAs are optimization techniques, inspired on the theo-

ries of evolution and natural selection, which can be em-

ployed to find an optimal configuration for a given sys-

tem within specific constraints [8]. In these algorithms,

each individual of a population is characterized by a set of

parameters to be optimized (or chromosome). An initial

population is created, usually from a set of random chro-

mosomes, and this population will evolve, improving its

global performance, by means of an iterative process. Dur-

ing this process, each individual is evaluated by means of

a fitness function, representing how its chromosome con-
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figuration can be a good solution for the given problem.

A new generation is produced by applying mutation and

crossover operators, with probabilities pm and pc respec-

tively, on selected individuals presenting high fitness val-

ues.

Two independent EAs are sequentially applied in this

work. The first one, named EA1, jointly optimizes the pa-

rameters for the detection of Pon, Ppeak, Poff, QRSon, R

and QRSoff. Parameters for Tpeak and Toff are optimized

with a second EA noted EA2. Such a partitioning permits

to reduce the dimension of the search space and is possible

because the detection of the T-wave will be optimal only

if the detection of the S-wave is previously optimized. In

all EA, the best individual of the last generation has been

retained as the optimal solution. Details of these EAs are

the following:

• individual coding: individuals are coded with real-

valued chromosomes. Values for each parameter were

bounded to a meaningful interval: time windows are de-

fined from possible extrem position and duration of each

wave whereas boundaries of other thresholds are deter-

mined by largely increasing (upper bound) and decreasing

(lower bounds) parameters from [2]. These intervals are

employed by the EA during the construction of the initial

population and the application of genetic operators.

• cost function: we are interested in the optimal set of pa-

rameters that jointly minimizes the probability of detec-

tion error (Perrp =
√

Pfa2
p + (1 − Pdp)2) and the de-

tection jitter, for each characteristic point p. This kind

of multiobjective optimization is a complex task and can

be approached as a single-objective problem, where the

cost function is a weighted average of different criteria.

In this work, the EA has been defined to minimize such

a weighted cost function, defined as:

O =
∑

p

(
Perrp

ap

+
εp

bp

+
σp

cp

)

where εp is the mean difference between detected and

annotated instants (detection jitter) for point p. σp =
P

r
(Nrσr

p
)

P

r
Nr

is the global standard deviation, calculated as

the mean of the standard deviation of the detection jitter

for each record (σr
p) which are weighted according to their

number of beats (Nr).

ap, bp and cp are weighting factors setting the relative im-

portance of each criterion. These weights are defined from

results published by [2] and [9], in order to provide similar

weights to each criteria.

• selection method and genetic operators: the ranking se-

lection method was used in this work. Standard genetic

operators for real-valued chromosomes were used (arith-

metic and heuristic crossover, uniform mutation).

Individuals are composed of 19 parameters for the first

Table 1. Optimal parameters

EA1 EA2

P11 299 γQRSpre 0.057 ǫT 0.13

P12 237 γQRSpost 0.079 γT 0.13

P21 96.5 ξQRSonpos 0.12 ξTon 0.43

P22 94 ξQRSonneg 0.065 ξTend 0.43

R1 127 ξQRSendpos 0.18 T11 140

R2 173 ξQRSendpos 0.46 T21 540

P RR 616 QRS Qlim 67 T12 152

ǫP 0.18 QRS Slim 87 T22 0.53

γP 0.46 T23 444

ξP on 0.47 T RR1 849

ξP end 0.73 T RR2 1320

Temporal parameters are in ms, other parameters have no unit.

EA (P and QRS delineation optimization) and 11 parame-

ters for the second one (T-wave delineation optimization).

Both EAs are trained over 80 generations, with 60 individ-

uals and probability pc is set to 0.7. In order to obtain more

reliable and stable solutions, pm has been adapted through

the evolutionary process, being high during the first gen-

erations (to ensure a wider individual distribution on the

search space) and quite low at the end (to assure the con-

verge to a minima), as proposed in [10].

3. Results

The QTDB (physionet) contains 105 records with

around 30 annotated beats per record [5]. These records

have been acquired from healthy subjects and patients pre-

senting different pathologies. There are two ECG chan-

nels per record and the sampling rate is 250 Hz. In this

work, all available records have been divided into three

equal portions, called subrecords. Two datasets are cre-

ated from available subrecords: a training set, consisting

of two thirds of the subrecords, selected randomly from

the database, and a test set, with the rest of the data.

Table 1 presents the optimal parameters obtained after

the application of both optimization stages (EA1 and EA2)

on the training set. These parameters have been used to

evaluate the performance of the detector on the test set, by

using the evaluation framework proposed by Jané [11]. Re-

sults obtained with the optimal parameter set are compared

to those achieved by [2] and [9]. Mean error (m) and stan-

dard deviation (s) are computed and averaged over all the

records of the test set with a weight corresponding to the

number of beats per record. These results are presented in

table 2. As we disposed of two channels and cardiologists

used a combination of both to detect only one position, we

chose for each point the channel providing less error. Sen-

sibility and predictivity are also computed (table 3).
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Table 2. Delineation Comparison with the test set

Method Criteria Pon Ppeak Poff QRSon QRSoff Tpeak Toff

This work m±s (ms) 1.9±11.8 1.4±9 3.1±10.1 0.3±6.6 -1.9±8.3 0±14.3 3.5±24

Martinez [2] m±s (ms) 2.0±14.8 3.6±13.2 1.9±12.8 4.6±7.7 0.8±8.7 0.2±13.9 -1.6±18.1

LPD [9] m±s (ms) 14.0±13.3 4.8±10.6 -0.1±12.3 -3.6±8.6 -1.1±8.3 7.2±14.3 13.5±27

Table 3. Detection Comparison

Method Criteria Pon Ppeak Poff QRSon QRSoff Tpeak Toff

This work Se (%) 98,79 98.39 98.58 100 100 98.77 97.09

P+ (%) 99.23 98.88 98.88 98.10 98.48 97.9 98.47

Martinez [2] Se (%) 98.87 98.87 98.75 99.97 99.97 99.77 99.77

P+ (%) 91.03 91.03 91.03 N/A N/A 97.79 97.79

LPD [9] Se (%) 97.7 97.7 97.7 99.92 99.92 99.0 99.0

P+ (%) 91.17 91.17 91.17 N/A N/A 97.74 97.71

Results in table 2 show that the jitter observed with the

proposed algorithm is often lower than the jitter obtained

by [2] and [9]. For three characteristic points (Pon, Ppeak,

QRSon) out of seven, both the mean error and the stan-

dard deviation are lower than the other algorithms. The

standard deviation is only higher for Tpeak and Toff when

compared to [2] and higher for QRSoff when compared to

[9]. Errors in QRSoff detection revealed to be mostly due

to beats presenting bundle branch block, leading to unde-

tected S-waves. Results about the sensibility and specifity

reported in table 3 show that our algorithm perform well

compared to other algorithms: all beats were detected with

the Pan & Tompkins detector whereas a few beats are not

detected with the other algorithms.

4. Discussion and conclusions

The optimal definition of the set of parameters required

in complex signal-processing algorithms can be a compli-

cated problem. In this work, we have proposed a method to

obtain such an optimal set of parameters, based on an EA.

It has been employed to tune all the parameters of a WT-

based ECG delineators by minimizing the jitter error and

the probability of false detection for each detected point.

Even if the comparison of the results can be difficult be-

cause our test data was one third of the QTDB instead of

the whole database for other methods, it can be noticed

that our algorithm achieved better results for most of the

points evaluated, showing that our parameters are well set.

Finally, altough records of the QTDB offer a wide panel

of beat morphologies, and thus should avoid problems of

generalization, it would be interesting to evaluate this al-

gorithm on other standard ECG databases.
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