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Abstract 

The Continuous Wavelet Transform (CWT) offers a 

valuable tool for the analysis of signals as it provides 

precise location in time of high frequency components. 

The selection of a mother wavelet with high correlation 

with the signal under study provides a more accurate 

time-frequency analysis. Continuous Wavelet Transform 

Modulus Maxima (CWTMM) reduce the computational 

requirement by representing only the pertinent 

information contained within the scalogram obtained 

from Continuous Wavelet analysis. This new domain has 

an easy interpretation and offers a useful tool for the 

automatic characterization of the different components 

observed in the ECG in health and disease. The aim of 

this work was to compare the two time-frequency 

domains for ECG analysis: CWT and CWTMM, 

providing example applications of both methods.  

1. Introduction 

The surface electrocardiogram (ECG) is a crucial 

diagnostic investigation in many areas of modern 

medicine.  Analysis of the ECG has become an important 

area of research, in particular where advanced signal 

processing techniques can yield useful and timely 

information, which is otherwise inaccessible, e.g. the 

identification of ventricular fibrillation during cardiac 

resuscitation. Traditionally, analytical tools extracting 

time-frequency information have been based around the 

Fourier Transform [1,2]. More recently, the Continuous 

Wavelet Transform (CWT) has been used successfully in 

the processing of ECG signals, and offers significant 

advantages – in particular the preservation of location 

specific features [3-5]. In this paper we explore the use of 

CWT and CWT Modulus Maxima (CWTMM) in the 

analysis of beat morphologies.   

 

2. Theory 

The wavelet transform of a continuous time signal, x 

(t), is defined as: 
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where ψ*
(t) is the complex conjugate of the wavelet 

function ψ(t), a is the dilation parameter of the wavelet 

and b is the location parameter of the wavelet.  In order to 

be classified as a wavelet, the function must satisfy 

certain mathematical criteria.  These are: 

 

1 – A wavelet must have finite energy:  
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2 - If ( )fψ̂  is the Fourier transform of ψ(t),  
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This implies that the wavelet has no zero frequency 

component, i.e.  ( ) 00 =ψ̂ , or to put it another way, it must 

have a zero mean. Equation 4 is known as the 

admissibility condition and Cg is called the admissibility 

constant.  The value of Cg depends on the chosen 

wavelet. 

 

3 - For complex (or analytic) wavelets, the Fourier 

transform must both be real and vanish for negative 

frequencies. 

 

The contribution to the signal energy at the specific a 

scale and b location is given by the two-dimensional 
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wavelet energy density function known as the scalogram: 

 

  2|),(|),( baTbaE =     (5) 

 

The total energy in the signal may be found from its 

wavelet transform as follows: 
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In practice a fine discretisation of the continuous 

wavelet transform is computed where usually the b 

location is discretised at the sampling interval and the a 

scale is discretised logarithmically. The a scale 

discretisation is often taken as integer powers of 2, 

however, we use a finer resolution in our method where 

the a scale discretisation is in fractional powers of two. 

This discretisation of the continuous wavelet transform 

(CWT) is made distinct from the discrete wavelet 

transform (DWT) in the literature.  In its basic form, the 

DWT employs a dyadic grid (integer power of two 

scaling in a and b) and orthonormal wavelet basis 

functions and exhibits zero redundancy.  Our method, i.e. 

using a high resolution in wavelet space as described 

above, allows individual maxima to be followed 

accurately across scales, something that is often very 

difficult with discrete orthogonal or dyadic stationary 

wavelet transforms incorporating integer power of two 

scale discretisation.  Further background information 

concerning continuous wavelets and their properties can 

be found in references [6] and [7]. 

 

Wavelet modulus maxima, defined as: 

 

 

                    (7) 

 

are used for locating and characterising singularities in 

the signal (Note that equation 7 also includes inflection 

points with zero gradient. These can be easily removed 

when implementing the modulus maxima method in 

practice). Modulus maxima-based methods are beginning 

to find favour in the analysis of a variety of signals 

including in engineering and medical signals, and the 

characterisation of multifractal signals [8-18]. 

In this study we employ the Mexican hat wavelet, 

which is the second derivative of a Gaussian function, 

defined as: 

                                                                                              

(8) 

 

 

This wavelet has been used in practice for a number of 

data analysis tasks in engineering, including the 

morphological characterisation of engineering surfaces, 

the interrogation of laser-induced ultrasonic signals and 

the analysis of turbulent flows [7]. The Mexican Hat is 

used extensively in studies requiring the use of modulus 

maxima methods as its maxima lines (and those of other 

derivatives of Gaussian functions) are guaranteed 

continuous across scales for singularities in the signal 

[19]. 

3. Methods 

A variety of ECGs with different characteristic 

morphologies were observed in both the CWT and 

CWTMM domains. Specifically, healthy ECGs with 

different QRS shapes [Figure 1], pathologic examples as 

Ventricular Tachycardia [Figure 2] and Ventricular 

Fibrillation were observed. No pre-processing was used. 

 

 

 

 

 

 

 

 

 

Figure 1. Fragment of 1 second length of one healthy 

ECG. 

 

 

 

 

 

 

 

 

Figure 2. Fragment of 1 second length of a Ventricular 

Tachycardia ECG. 

 

Simulated ECGs with added noise and small amplitude 

sinusoidal signals added at the end of the QRS complex 

were also studied [Figure 3].  

 

 

 

 

 

 

 

 

 

Figure 3. The ECG fragment shown in Figure 1 with an 

artificial signal added at the end of the QRS. No noise 

was added. 
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4. Results 

The CWTMM performed well in recognising the 

characteristic points of the ECG including the R wave and 

the P and T waves whose Modulus Maxima have very 

recognisable characteristic shapes [Figure 4]. This 

domain can easily filter out the white noise within the 

signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CWTMM of the ECG shown in Figure 1. In the 

figure the main characteristic waves, P, QRS and T can 

be clearly distinguished. The MM below 10% of the 

maximum value were ignored.  

 

The CWT also performed well in this use [Figure 5]. 

However the information displayed in the CWTMM was 

clearer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. CWT of the ECG shown in Figure 1. In the 

figure the main characteristic waves, P, QRS and T can 

be clearly distinguished. 

 

However the CWTMM was found not to perform as 

well when used to detect small oscillations added at the 

end of the QRS complex (i.e. simulated VLPs). These 

small signals can be perceived in the plot but they are 

difficult to differentiate from the MM associated with 

noise [Figure 6]. The CWT was found better for this task 

[Figures 7 and 8]. In this study it was found that most 

characteristic waveform features within the signal can be 

recognized in both domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. CWTMM of the ECG shown in Figure 3. 

Frequencies 50-100Hz were considered to match the 

artificial signals added.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. CWT of the ECG shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Zoom from Figure 7 in the temporal interval 

where the artificial signals were located in the time-

frequency plane.  
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An algorithm to detect characteristic ECG points such 

as the R wave has been developed using the CWTMM 

domain and was found to exhibit good performance [20]. 

However VLP detection using this domain was not 

successful in detecting the microvoltage amplitude 

signals. A CWT-based method gave superior results [21] 

for this task. 

5. Discussion and conclusions 

The CWT and the CWTMM are two good tools for the 

analysis of ECGs and both exhibit good performance in 

presence of noise. The low level of computational 

complexity of the CWTMM makes it the easier of the two 

to employ in practice. However, for the detection of small 

waveform features within the ECG, the CWT contains 

more detailed information and therefore has the potential 

to produce enhanced results. 
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