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Abstract 

In this paper we present a method for removing 

artifacts from biomedical signals acquired by wearable 

systems, taking advantage of multichannel data 

acquisition since both artifacts and signals of interest 

show common features in different channels. In order to 

take into account the effects of the different paths from 

the source signals to the sensors, we propose a method 

based on blind separation of convolutive mixtures: the 

observed data are seen as linear mixtures of filtered 

source signals where neither the source signals nor the 

convolution and mixing processes are known. The only 

hypothesis we make to recover the original sources is the 

statistical independence among them. The proposed 

method was applied on real ECG signals corrupted by 

motion artifacts with satisfactory results. 

 

1. Introduction 

Wearable systems are designed to monitor vital signs 

in real life environments. These systems are based on 

flexible and smart technology: fabric electrodes realized 

with metal based yarns enable the realization of wearable 

and wireless instrumented garments capable of recording 

physiological signals and to be used by a subject during 

everyday activity. Monitored vital signs include breathing 

pattern, electrocardiogram (ECG), electromyogram 

(EMG), activity sensors.  

Some undesired signals may be superimposed on vital 

signs of interest and must be considered artifacts. These 

artifacts may have a biological origin, like reciprocal 

contaminations of muscle activity and heart cycles 

respectively in ECG and EMG recordings. Other artifacts 

are typical of wearable systems employment and can be 

caused by displacements of the electrodes integrated in 

the textile garment during subject movements. These 

motion artifacts produce base line drifts which can 

compromise vital signs parameters extrapolation. In the 

ECG recordings it is possible that all these artifacts cause 

the loss of the main features, like QRS complex, Pand T 

waves. 

Linear and non linear filtering [1] and adaptive 

filtering [2] can be listed among the techniques proposed 

in order to recover the features of interest from ECG 

recordings. Other approaches take advantage from the 

multichannel nature of the acquisitions with the aim of 

searching for common features present in different 

channels acquired simultaneously. These approaches may 

be useful if the frequency content of signal and noise 

overlap and filtering operation cannot reduce noise 

without loosing signal information. In blind source 

separation (BSS) methods the electrodes are assumed to 

measure a mixtures of some latent sources, and both the 

sources and the mixing process are unknown. 

Independent component analysis (ICA) [3] is a technique 

employed to solve BSS problem that starts the research of 

the sources from the hypothesis of statistical 

independence among them. This assumption implies that 

components belonging to different physiological 

phenomena can be extracted from the signals detected by 

the sensors. 

In the basic or instantaneous ICA model no time delay 

is involved in the mixing process and the signals picked 

up by the electrodes are a linear mixture of the sources. 

Several applications of basic ICA in removing artifacts 

from biomedical signals have been presented [H1] [4]. 

However, if we want to account for different paths of the 

source signals to the electrodes or for spatio-temporal 

dynamics, as Anemuller hypothesize for neural processes 

in EEG recordings [5], we must introduce convolution in 

the mixing process and consider that the sources have 

different time delays in each observed signals. For this 

reason we model our acquisitions as a convolutive 

mixture of unknown sources. 

In this paper we present a frequency domain approach 

[5, 6] to solve the convolutive mixtures problem 
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exploiting the algorithms developed for the instantaneous 

ICA model since a convolution in time domain is a 

product in the frequency domain. We show how the 

proposed method can remove artifacts from ECG signals 

acquired by the wearable system developed by Smartex 

S.r.l [7, 8], partner in MyHeart IST-2002-507816 project 

and Wealthy IST-2001-37778 project. The processed 

signals are compared with the same ECG leads acquired 

simultaneously with standard red dot electrodes. 

2. Methods 

The basic or instantaneous ICA model assumes that a 

set of measurements xi(t) are originated by a linear mixing 

process of some latent sources si(t): 
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with i=1,2,…m, j=1,2,…,n and t=1,2,…,T as we operate 

with discrete time signals. If we use a vector 

representation of x(t)=[x1(t),…,xm(t)]
T
 and 

s(t)=[s1(t),…,sn(t)]
T
, we can express equation (1) in 

matrix notation x(t)=As(t) where A is called the mixing 

matrix. Both the sources si(t) and the mixing process, A, 

are unknown. The hypothesis used in order to extract the 

original sources is that they are statistically independent. 

The goal is to estimate a matrix W called the unmixing 

matrix, such that y(t)=Ws(t) is an estimate of the original 

sources s(t). In the following we assume the number of 

sources equals the number of acquired signals, thus n=m. 

To account for the different paths of the latent sources 

to the electrodes we have to consider the filtering effect of 

the tissue interposed. Hence we have to introduce 

convolution in the mixing process: 
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where the elements of the mixing matrix A become finite 

impulse response (FIR) filters of length L. 

Fourier transform techniques are useful when dealing 

with convolutive mixtures, because convolution operator 

becomes a product in the frequency domain [5, 6]. Thus a 

short time Fourier transform (STFT) of the observed 

signals is performed and the one-dimensional sequence 

xi(t), which is a function of a single variable t, is 

converted into a two-dimensional function Xi(f,t): 
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where Sj(f,t) is the time-frequency representation of the i-

th source and Aij(f) is the Fourier transform of the 

elements of the mixing matrix A. The frequency content 

of each Xi(f,t) can be simplified by dividing the values of f 

in a certain number of frequency bin (or intervals). The 

instantaneous ICA model is applied separately in each 

frequency bin and the independent components 

Y(f,t)=W(f)X(f,t) are estimate where W(f) is the unmixing 

matrix for the bin f. 

Several approaches have been proposed in order to 

solve the instantaneous ICA model. In this work we make 

use of the fast fixed point algorithm (FastICA) derived by 

Hyvarinen for maximization of nongaussianity evaluated 

by the Negentropy of estimated components [3]. 

As we are dealing with complex numbers the 

instantaneous algorithm must be modified, thus the one 

unit learning rule of the FastICA becomes: 
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where the transposition operator is changed with the 

herimian operator ()
H
 and E{.} stands for the expectation 

operator. The non linearity f(y), which takes into account 

higher order cumulants to approximate the Negentropy of 

the data, converts from f(y)=tanh(y) to 

f(y)=tanh(Re{y})+tanh(Im{y})i [6]. 

As pre-processing steps, before performing ICA on 

Xi(f,t), both a removal of the mean value and a whitening 

operation using PCA is performed: this operation 

simplifies the estimation of the unmixing matrix W that 

becomes orthogonal with only n(n-1)/2 degrees of 

freedom instead of n
2
. 

A frequency domain ICA approach, as the basic ICA, 

suffers from some ambiguities: the first ambiguity is that 

it is not possible to determine the order of the extracted 

independent components while, the second ambiguity, 

regards the fact that the independent components are 

always extracted up to a scale and a phase factor. Both 

these ambiguities affect the ICA model applied at each 

frequency bin. In order to solve the first ambiguity we 

need some method for choosing which components in 

different bins belong together and can be associated to the 

same source signal. Inter-frequency correlations of 

signals can be used [9], since two spectral envelopes 

belonging to the same source should have a higher 

correlation coefficient than the one they would have if 

they belonged to different sources. For this reason we 

compute the correlation coefficient between each 

),( tfY ki
 extracted in one bin and the others ),( 1 tfY kj −

, 

with j=1,...,n, belonging to the preceding bin. An iterative 

procedure looks for the highest correlation value and 

aligns the two components that have obtained it. These 

two components are eliminated from successive steps and 

the same practice is reiterated for the remaining n-1 

components. This procedure is repeated until the last 
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frequency bin is aligned with the preceding one. 

To solve the second ambiguity the estimated 

components can be returned to the space of the 

observation by: 
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where XiYj(f,t) represents the j-th estimated independent 

component contribute in the i-th channel for the 

frequency bin f, and (Wf
-1

)ij is the ij-th element of Wf
-1

. 

After performing all this linear transformations, we can 

group the XiYj(f,t) in the following way: 
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If some independent components, returned to the 

observation space, are not significant for the information 

provided by the channel i, they can be set to zero in (6). 

This procedure guarantees artifacts removal from a 

multichannel acquisition. 

As we want to monitor the ECG signals, the related 

component extracted from convolutive mixtures must be 

identified automatically. We propose to exploit the 

periodicity of the ECG signal. If a short observation 

window (several seconds long) is chosen, the same 

periodicity can be found in the magnitude spectrogram 

[10]. This periodic pattern can be used to discriminate the 

ECG (or at least the QRS) component from other non 

periodic components. Signals with important periodic 

components show different mean value of the magnitude 

spectrogram autocorrelation function, from the one 

computed for non periodic signals. In fact, for the latter 

class of signals, the time over which a certain pattern is 

correlated is very short and settles rapidly to zero. An 

ECG related component can be identified fixing a proper 

threshold of the area of the autocorrelation function. 

An inverse short time Fourier transform (ISTFT) can 

be used as final step to obtain the reconstructed signals in 

the time domain xi’(t) without artifacts components. 

3. Results 

The proposed method was tested on real ECG signals 

acquired by Smartex s.r.l. wearable system. The subject 

was asked to twist his bust in order to produce signals 

affected by artifacts. 

Two precordial leads, V2 and V5 were registered with 

the wearable systems and with red dot electrodes placed 

just below the metal yarn ones. Red dot electrodes are 

considered the gold standards in this study. The analog 

filter was a band pass filter with cut off frequencies 0.3-

100Hz followed by a notch filter at 50Hz. The sampling 

rate was fs=250Hz (sampling period Ts=1/fs=4ms). Eight 

seconds long recordings were processed with convolutive 

ICA. The time-frequency representation of the data was 

obtained by a mst 120=∆  Hamming window 

( 30=∗∆= cTtN  points) and the overlap between 

neighbouring windows was fixed at 90%. The frequency 

domain ICA was carried out for the frequency bins 

included between f1=0Hz and f2=50Hz, assuming that the 

main frequency ECG content is located in this interval. 

For the remaining bins no analysis was carried out and 

both the channels were left unchanged. Hyvarinen’s 

FastICA algorithm (4) was employed for independent 

component research. The number of iterations for each 

algorithm’s run was fixed at 50. After two independent 

components had been estimated in each bin and aligned 

according to correlation coefficient technique, they were 

returned to the observation space by (5). Then, 

concentrating the analysis in the first ECG channel, the 

most periodic magnitude spectrogram among the two 

components  were searched employing the autocorrelation 

function method described in the previous section The 

most periodic component was associated to the ECG 

source, while the other was considered an artifact 

component and set to zero in (6). A inverse STFT was 

applied to obtain time domain evolution of the signals 

xi’(t), where i=1 indicates the V2 while i=2 indicates the 

V5 precordial lead. 

To evaluate the performance of the proposed method, 

the original wearable system’s acquisitions xi(t) and the 

algorithm output signals xi’(t) were compared with the 

same ECG lead signals xri(t) recorded with standard red 

dot electrodes (their time evolution is showed in figure 1).  

 

 
 

Figure 1. Time evolution of acquired signals xi(t) and 

xri(t) and processed signals x’i(t). 
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Hence the correlation coefficients between the 

magnitude spectrograms of xi(t) and xri(t) and between 

x’i(t) and xri(t) were estimated. These correlation 

coefficients were used as quality indexes to asses the 

algorithm performance. The spectrograms were obtained 

by a STFT using the same window specifics employed for 

the time frequency representation of the original wearable 

system data. The correlation coefficients were evaluated 

in every frequency bin inside the f1-f2 interval (0-50Hz), 

where we carried out the independent components 

research. The total number of frequency bins analyzed is 

7, given a frequency resolution of 

( ) HzTNf S 333.81 =∗=∆ . In figure 2 the correlation 

coefficients between magnitude spectrograms as function 

of the frequency bins are shown. 

 

 
 

Figure 2. Correlation coefficients between magnitude 

spectrograms Xri(f,t) and X(if,t) and between Xri(f,t) and 

X’i(f,t). as function of frequency bins. 

4. Discussion and conclusions 

In this paper we have proposed a method for 

monitoring ECG signals by a frequency domain approach 

to blind source separations. Starting from the 

multichannel nature of the acquisitions we have modelled 

our signals as a convolutive mixture of independent 

components. The ECG and artifacts components were 

separated from multichannel acquisitions in frequency 

domain, where we could exploit the algorithms derived 

for instantaneous ICA model. 

Two ECG precordial leads were acquired by Smartex 

s.r.l wearable systems and processed with our algorithm. 

The original data and the results achieved by the proposed 

method were compared with the same ECG leads signals 

acquired with standard red dot electrodes. The correlation 

coefficients comparison in figure 2 indicates that the 

application of our algorithm to wearable systems 

recordings produces ECG signals more similar to the 

standard red dot ones than the original acquisitions. The 

convolutive ICA technique, as presented in this paper, 

can thus be employed to improve the features of ECG 

signals acquired by wearable systems affected by 

artifacts. 

A frequency domain approach to convolutive ICA 

allows to carry out the independent component research 

only in those bins where the artifacts and the desired 

signals overlap. This method can be extended to a wide 

collection of noisy multichannel acquisitions as it is 

completely blind and doesn’t makes any hypothesis on 

the signals features. 
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