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Abstract

The aim of this study is suppression of parasite elec-

tromyographic (EMG) signals (myopotentials) included in

ECG signals with use of the Wiener filtering in shift-

invariant wavelet domain with pilot estimation of the sig-

nal. The wavelet filtering with hybrid thresholding was

used for pilot estimation. The four-levels shift-invariant

dyadic discrete-time wavelet transform decomposition was

used for both main blocks of pilot estimation and Wiener

filtering. Sampling frequency of used signals was 500 Hz.

The testing set have included signals with small waves Q,

high R waves and significant variations of precipitousness

in onsets and offsets of QRS complexes. These signals were

additionally noised by normal distribution noise its power

spectrum was adjusted according to typical form of power

spectrum of EMG signals.

1. Introduction

The ECG signal is a superposition of the signal and

noise. Occurrence of noise complicates a computer analy-

sis. Linear filtering isn’t suitable for wideband myopoten-

tials suppression, because it leads to strong cut off the local

extreme of QRS complexes and to disturbance the signif-

icant variation of signal precipitousness in onsets and off-

sets of QRS complexes.

The frequency spectrum of the ECG signal contains the

components approximately from 1 to 125 Hz. Frequency

spectrum of the myopotentials is sharply overlapped with

spectrum of the ECG signal (approximately from 10 Hz).

The intensity level of noise is low in case of rest ECG sig-

nals, it is groundless for visual analysis, however computer

analysis may be complicated. More troublesome is analy-

sis of stress ECG where the noise level is much higher then

in case of rest ECG.

Discrete-time wavelet transform (DTWT) appears as a

useful tool for myopotentials suppression. The filtering is

based on modification of the coefficients of wavelet trans-

form depend on estimated noise level. It can lead to minor

distortion of the signal in stead of linear filtering [1]. Im-

portant is to choice a threshold strategy. Occurrence of

high artefacts cause to overthreshold values of DTWT co-

efficients of noise is disadvantage of using a hard thresh-

olding. It is distinct mainly around onsets and offsets of

QRS complexes. On the other hand, the main disadvan-

tage of a soft thresholding is decreasing the values of local

extremes in QRS complexes and sporadic occurrence of

mentioned artefacts. Smaller decreasing of local extremes

and sporadic occurrence of artefacts is property of hybrid

thresholding, (see Sec. 3.1).

Wavelet domain Wiener filtering with pilot estimation of

the signal gives better results than wavelet filtering with us-

ing some of mentioned type of thresholding. This method

do not significantly distorts the extremes in QRS com-

plexes and it is without artefacts by realization of suit-

able pilot estimation. In [2] was used the wavelet domain

Wiener filtering with decimation and very simplify estima-

tion of DTWT coefficients. In [3] was realized wavelet

domain Wiener filtering with pilot estimation which was

composed by DTWT with decimation and hard threshold-

ing. It have been led to frequent occurrence of artefacts in

filtered signal.

The point of view in our experiments was on wavelet

domain Wiener filtering with pilot estimation of the sig-

nal realized by shift-invariant dyadic DTWT. The pilot es-

timation have been realized as a wavelet filtering (shift-

invariant dyadic DTWT) with hybrid thresholding.

2. Discrete time wavelet transform

The main block of described method is shift-invariant

dyadic DTWT realized by bank of filters illustrated in the

Fig. 1, where HHP(z) is a decomposition highpass filter

and HLP(z) is a decomposition lowpass filter.

Let we assume the input data x(n) as a signal s(n) and

additive noise w(n), so x(n) = s(n) + w(n). DTWT

coefficients of the data x(n) let we mark as a ym(n) and

coefficients of the signal and noise um(n) and vm(n) re-

spectively, where n is an index of the coefficient of mth

level of decomposition. Due to linearity of DTWT is

valid ym(n) = um(n) + vm(n).

By wavelet filtering is necessary to adjust the modifi-

cation of the coefficients to intensity of noise components

(standard deviation or variance) in mth level. When the in-

tensity of noise was low, it would be threshold values low
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Figure 1. Three-level shift-invariant dyadic DTWT de-

composition.

and the risk of the damage of signal s(n) would be lower

too. The variance of noise components estimation can be

provided in areas between QRS complexes - length of the

area is approximately 10 % of length of an R–R interval.

We can expect only components of noise between QRS

complexes in first 3 or 4 levels in condition of sampling

frequency 500 Hz (in dependency on magnitude frequency

responses of decomposition filters).

3. Wiener filtering in time-scale domain

In several publications [2, 4] can be found the analogy

between modification wavelet coefficients and the Wiener

filtering where the coefficients ym(n) are multiplied by

suitable formfactors. It has to be sought such formfac-

tor gm(n) as modified values λym(n) = ym(n) · gm(n) =
gm(n) · [um(n) + vm(n)] for which is valid minimum

square error e2
m(n) =

(

λym(n) − um(n)
)2 → min. Re-

sults give an equation for formfactor

gm(n) =
u2

m(n)

u2
m(n) + v2

m(n)
≈ u2

m(n)

u2
m(n) + σ2

vm

, (1)

where the noise values vm(n) are unknown, therefore their

square were substituted by noise variance σ2
vm

in mth

level. For u2
m(n) ≫ σ2

vm
will the gm(n) ≈ 1

and |λym(n)| ≈ |ym(n)|. On other hand for u2
m(n) ≪

σ2
vm

will the gm(n) ≪ 1 and |λym(n)| < |ym(n)|. The

coefficients um(n) are unknown. Their estimation is pos-

sible, (see Sec. 3.2).

3.1. Hybrid thresholding

The estimation of um(n) from ym(n) and variance of

noise in form u2
m(n) = max

[

ky2
m(n) − σ2

vm
, 0

]

is used

in [5], where is explained the choice of constant k = 1/3.

The result leads to formfactor

gm(n) =

= max

[

y2
m(n) − 3σ2

vm

y2
m(n)

, 0

]

= max

[

1 − 3
σ2

vm

y2
m(n)

, 0

]

.

(2)

When we expressed the estimation λym(n) with using

eq. (2) like λym(n) = ym(n) · gm(n) we can get to no-

tion that it is the thresholding of the coefficients with the

threshold λm =
√

3σvm
, from it follow

λym(n) =

〈

ym(n) − λ2

m

ym(n) , for |ym(n)| > λm

0, for |ym(n)| ≤ λm

.

(3)

From eq. (3) it can be seen that it is compromise between

soft and hard thresholding: it is approached to soft thresh-

olding for values |ym(n)| approximately equal to λm and

hard thresholding for values |ym(n)| much higher than λm.

Therefore we named this method as hybrid thresholding.

3.2. Pilot estimation method

Other possibility of estimation the um(n) is method of

pilot estimation ps(n) of the signal s(n). After DTWT

decomposition we can get the coefficients pum(n) of sig-

nal ps(n) [4]. Principle of wavelet domain Wiener filtering

with pilot estimation is shown in the Fig. 2. Realization
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Figure 2. Principle of Wiener filtering with pilot estima-

tion.

of pilot estimation is placed on upper branch: At first the

input signal is decomposed by DTWT (WT1) into 4 lev-

els. Than the coefficients are thresholded (block H) and

reconstructed by inverse DTWT (IWT1). Output of this

configuration give the pilot estimation ps(n) of the sig-

nal. Wavelet-based Wiener filtering is illustrated on the

lower branch. Input signal is decomposed into 4 lev-

els by block WT2, coefficients are modified by eq. (1)

(block HW), where the um(n) are replaced by pilot esti-

mation pum(n) obtained from decomposition of pilot sig-

nal estimation ps(n) by block WT2. Output of the mod-

ification block HW is signal named λpym(n). Finally the

inverse IWT2 is necessary to complete reconstruction of

the signal s(n).

772



For mean square error ε2
y between coefficients in mth

level λym(n) obtained from (1) with ideal values um(n)
and estimated coefficients λpym(n) can be wrote

ε2
y = E

{

(

λym(n) − λpym(n)
)2

}

=

E

{

(

u2
m(n) + σ2

vm

)

·
(

u2

m
(n)

u2
m

(n)+σ2
vm

−
pu2

m
(n)

pu2
m

(n)+σ2
vm

)2
}

,

(4)

in condition that um(n) and vm(n) aren’t correlated, so

that it is valid E

{

y2
m(n)

}

= E

{

u2
m(n)

}

+ σ2
vm

.

Let we suppose the wavelet filtering with thresholding

in branch of pilot estimation. From eq. (4) for |pum(n)| <
|um(n)| results higher contributions to error ε2

y and

for |pum(n)| > |um(n)| reversely. The sensitivity to this

difference growing up in dependency of growing variation

of noise. In case of |um(n)| ≫ σvm
than the difference be-

tween |pum(n)| and |um(n)| are minimal. On other hand,

in case of |um(n)| ≈ σvm
we can expect the retained

over threshold values, however with market participation

of noise. Than we can register large total error e(n) be-

tween signal s(n) and output signal y(n). Using of the

soft thresholding is more suitable in this cases. Applying

of the hybrid thresholding (in block H) by eq. (3) is a com-

promise between hard and soft thresholding.

The hybrid thresholding with value of the thresh-

old λm = 3σvm
was used by pilot estimation method re-

alization. The value of the threshold was advisedly higher

against the eq. (3) in order to prevent the artefacts creation.

In case of lower threshold values it exist the risk that the

Wiener filter magnify the minor noise artefacts.

4. Testing set of signals and noise model

Some signals from CSE Multilead Atlas (sampling fre-

quency fs = 500 Hz) were chosen into the testing file.

Especially the signals with small Q and high R waves and

with remarkable changes of signal precipitousness in QRS

onsets and offsets. We have selected the signals only with

minimal intensity of noise, because the signals from CSE

library were discretized with quantization step q = 5µV,

a power line interference and myopotentials. This signals

were preprocessed at first by Wiener filtering and than were

added the autificial additive noise of known intensity. It

was paid close attention to preprocessing: the result of the

filtering was checked after than the signal was put into the

testing set.

The additive noise is based on white noise which was

frequency limited according to shape of the power spec-

trum of surface muscle biceps brachii EMG signal [6].

5. Discussion and conclusions

The results were assessed according to achieved signal

to noise ratio SNRy of the output signal y(n) by the fol-

lowing equation:

SNRy = 10 log10

N−1
∑

n=0
s2(n)

N−1
∑

n=0
(y(n) − s(n))

2

[dB], (5)

where the signal s(n) have had zero mean. The signal to

noise ratio of the input signal SNRx was computed same

as eq. (5), but in denominator was only chosen variance of

noise.

The different banks of filters and their combination in

blocks WT1 and WT2 were tested. The orthogonal fil-

ters banks with short impulse responses (haar, db2),

biorthogonal (bior2.2) and banks with longer impulse

responses (db5, and bior6.8) were tested. Achieved re-

sults, the mean of output SNRy can be found in the Tab. 1,

where the input SNRx was 10 and 14 dB.

Table 1. Resultant SNRy after wavelet Wiener filtering

with pilot estimation.

Banks of filters SNRx =10 dB SNRx =14 dB

WT1 / WT2 avg. SNRy [dB] avg. SNRy [dB]

haar / haar 21.4 24.3

bior2.2 / bior2.2 22.8 26.0

bior6.8 / bior6.8 22.8 25.9

db2 / db2 22.6 25.5

db5 / db5 21.9 24.9

haar / db2 22.1 24.8

bior2.2 / haar 21.1 25.2

bior2.2 / db2 21.2 25.5

db2 / haar 20.6 24.9

db2 / bior2.2 22.5 24.9

In cases of the same banks of filters WT1 and WT2 were

achieved better results. Similar quality of filtering we can

expected with combination of filters banks with short im-

pulse responses (haar, bior2.2 and db2). On the other

side, the weakest results give the using bank of filters with

long impulse responses (bior6.8 or db5).

In the Fig. 3 is illustrated filtering by proposed method

for input signal with SNRx = 10 dB (left) and 20 dB

(right). The haar type of filters bank in pilot estima-

tion of the signal were used. For Wiener filtering was

used the wavelet decomposition with db2 type of filters

bank. Input data are signals s(n) with additive noise w(n),
x(n) = s(n) + w(n), output of the filter marked as y(n)
has a total error e(n) of the filtering, e(n) = s(n) − y(n).

The deformations of high waves in QRS complexes in

testing set of signals were depended on noise intensity

and the deformation magnitude fluctuated along the whole

record. The total error was commonly around tens of µV

and often happened to amplification of the original values

as can be seen in the Fig. 3 on the left.
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Figure 3. Filtering of the signal for SNRx=10 dB (left) and 20 dB (right) with filters banks haar/db2.

Deformation of small waves in QRS complexes and en-

larging of the QRS complexes has been proved more seri-

ous problems. With those distortions has to be supposed.

Magnitude of those distortions are growing up with noise

intensity (see Fig. 3). The best results were achieved with

the same banks of filters used in WT1 and WT2 in agree-

ment with global results written in the Tab. 1. In only

case of using the filter banks with long impulse responses

(bior6.8/bior6.8 and db5/db5) were in output sig-

nal y(n) visible typical oscillations placed exactly before

and behind the QRS complexes.

It could not be in danger of shape distortion when this

described method, with suitable chosen filters banks, is

used for filtering the rest ECG signals, where is too low

noise intensity. We put the preference on choice the filters

bank with shorter impulse responses. Output signal could

have positive effect on quality of following computer ECG

analysis. The advantage of wavelet filtering in compare

with linear filtering is more careful towards filtered signal.

The efficiency of filtering is falling down with descending

noise level. In case of stress ECG processing is the total

filtration error bigger. Common measured values in stress

ECG analysis is real-time trend of the ST segments mon-

itoring. This monitoring is besides linked to quality esti-

mation of signal level before QRS onset and behind QRS

offset. QRS complexes shouldn’t be after filtering dilated.

Designed method we consider to useful for preprocessing

the rest ECGs and stress ECGs.
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