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Abstract

An expert system was developed basically for the phono-
cardiographic (PCG) monitoring in the coronary care unit
and at home. The aim of the study was to examine the
performance of wavelet transformation in a heart failure
group with noisy environment. For detection and interpre-
tation of heart sounds and murmurs two analysis mesth-
ods were done. As first, with the Waveform Similarity
Overlap-and-Add (WSOLA) algorithm, a better separa-
tion of sounds was achieved for determination of the gold
standard to the cardiologist interpretators. For the time-
frequency analysis of PCG signals in a special clinical set-
tings (PCG monitoring of 52 heart failure patients (NYHA
III-1V) with ejection fraction < 0.35), various wavelets
were compared to an autoregressive (AR) model to deter-
mine the better model. As a result the Morlet wavelet wave
showed the best performance, so it will be used for the fu-
ture in our PCG data-, and knowledge-base.

1. Introduction

Cardiac auscultation is the most widely used clini-
cal method, but the experience and expertise among to-
day’s practicing physicians are declining because the lack
of training programs, and the widespread utilization of
Doppler echocardiography. In digital phonocardiogra-
phy, the short-time Fourier and the wavelet transformation
(WT) are used for the time-frequency representation (TFR)
of sounds and murmurs. The aim of the study was to ex-
amine the performance of WT in a heart failure group with
noisy environment for each patient in different time (dur-
ing hospital monitoring). Apart of these an expert system
was developed basically for the phonocardiographic mon-
itoring using our previous data [1].

Based on the literature [2, 3, 4, 5] the intensity of the
first sound (S1), the third and fourth sound (S3, S4), and
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the systolic murmurs were analyzed. For PCG monitor-
ing in the coronary care unit (and in home monitoring) the
followings are important:

The faint S1 could be detected in the case of weak ven-
tricular contraction as in LV systolic dysfunction or heart
failure, in AMI, or in dilatative cardiomyopathy (DCM).
Patients seen during an acute anginal attack may have
tachycardia and hypertension with transient S4 and S3 gal-
lop, (new or worsening) apical systolic murmur of MR
(due to papillary muscle dysfunction), a paradoxically split
S2, which disappears when the pain subsides. Patients with
acute myocardial infarction a S4 gallop can be heard in al-
most all patients in sinus thythm during or shortly after
an acute ischemic event. Although the presence of an S4
gallop may not be specific enough to be diagnostic, its ab-
sence argues strongly against an AMI. S3 gallop may also
be present in many pts after MI (approximately 25%) but
only if significant LV systolic dysfunction along with an
elevated LV filling pressure has developed (and, as such,
portends an adverse prognosis). The atrial (S4) gallop is a
good indicator of elevated LV end-diastolic pressure. Un-
like the S3 gallop, the S4 gallop does not denote ventric-
ular decompensation by itself. Systolic murmur occurred
by papillary muscle dysfunction (PMD) is observable in
30% to 50% or more of patients within the first 24 hours,
at least transiently. The sudden onset of respiratory dis-
tress/or shock and a new systolic murmur should alert the
clinician to suspect one of two surgically remediable me-
chanical complications (i.e., VSD or acute MR caused by
rupture of the papillary muscle). In the case of inferior-
posterior AMI with concomitant RV infarction: S4, S3 gal-
lop and systolic murmur of acute TR (short, soft, or absent
during expiration, increasing or ,,brought out” during in-
spiration) may register.

The aim of our work was to translate the above men-
tioned complex parameters to the language of expert sys-
tem. For the detection and interpretation of heart sounds
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and murmurs two methods were compared to each other.
First, using the WSOLA algorithm, a better separation
of sounds was achieved for determination of the gold
standard to the cardiologist interpretators. For the time-
frequency analysis of PCG signs in a special clinical set-
tings (PCG monitoring of 52 heart failure patients (NYHA
III-IV) with ejection fraction < 0.35), various wavelets
were compared to an autoregressive model to determine
the best model.

2. Methods

As a first step, the WSOLA (Waveform Similar-
ity Overlap-and-Add) algorithm with the encapsulated
Daubechies (Daub4) wavelet transform has been used for
multiresolution time-scale modification (MTSM) [7, 8].
Behind the time-scale modification using time-segment
processing, the basic idea is the time stretching of the ana-
lyzed segment without scaling the perceived frequency at-
tributes, such as pitch. Several algorithms are referred to as
OverLap-Add (OLA). To avoid phase discontinuities be-
tween segments, the synchronized OLA (SOLA) algorithm
uses cross-correlation approach to determine where the
segment boundaries have to be placed. The Time-Domain
Pitch-Synchronous OverLap and Add (TD-PSOLA), an
overlapping operation is performed pitch-synchronously.
It works well with signals with a prominent basic fre-
quency, but in other cases (e.g. noise) the size of the
overlapping windows has to be increased, furthermore the
phase error over a longer segment should be averaged,
making it less audible.

We selected the WSOLA algorithm, which uses the con-
cept of waveform similarity to ensure signal continuity at
segment joints. This algorithm searches a new signal com-
ponent to overlap and add with previous signal component
in a given time duration around the synthesis time.

In its basic form, the overlap-add (OLA) strategy for
time scaling consists of excising segments at time instants
71 (Ly,) from the input signal « (n), shifting them to time
instants L, and adding them together to form the time
scaled output signal y(n)!:

y(n)! = Zx (n+77"(Ly) = L) w(n— L) . (1)
k

Yielding the output signal in this way, the indi-
vidual segments will add incoherently, which intro-
duces structural discontinuities at the waveform seg-
ment borders. WSOLA introduces tolerance parameters
(Ak € [—Amax; - - - , +Amax]) on the desired time warp-
ing function to ensure that each new output segment
x(n+771(Ly) — Ly)w(n — Ly,) can be added coherently
to the already formed- portion of the time-scaled signal.
WSOLA ensures this signal continuity at segment joins by
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requiring maximal similarity between the new output seg-
ment and the segment that followed the previous output
segment in the input signal.

To avoid problems of noisy PCG registrations the orig-
inal fullband signal was decomposed into its sub-band
components, prior to the WSOLA calculation. Some au-
thors used the discrete Fourier transformation determining
the sub-bands, we implemented the wavelet transformation
[91.

The Daubechies-4 wavelet was applied in the multireso-
lutional time-scale modification (MTSM). The second tap
wavelet transform blocks (after using the QMF structure
in the first step) decompose the heart sounds into two sub-
bands: high-pass filter (h (n)) is related to frequency band
between 250-500 Hz, and low-pass filter (g (n)) between
0-250 Hz. Next, the WSOLA algorithm used for slowing-
down, and finally the /’, ¢’ synthesis filters reconstruct the
PCG signal. At the next step some wavelets (Haar, Meyer,
Morlet, Mexican Hat, Daubechies(4)) were compared us-
ing an autoregressive (AR) model [6]. The following PCG
data may represent the left ventricular dysfunction: faint
first sound (fS1), S3 and S4 gallop sound, systolic murmur
in the mitral auscultation area (MR). Using two observa-
tions, the change of these four entities were analyzed.

For a comparison we also analysed the input signal by
the well known AR method, where each sample can be
expressed as a linear combination of the previous samples
and an error signal:

M
z(n) == apz(n—p)+e(n), @)
p=1

where 2:(n) is the input signal, ay is the AR coefficients,
e(n) is the estimated error signal, M denotes the model
order.

The power spectral estimation (PSE) function of the AR
method, Pag(w), is calculated:

oe

Pag(w) = 3)

M 2
I+ Zp:l ape=7vr

where o2 denotes the noise variance (= we assumed to
be constant), w the frequency, respectively. The modified
Yule-Walker method was used (11 Kay), with a model or-
der of 30. The continuous wavelet transform (CWT) was
employed for the time-frequency representation, where
five different wavelets functions (Haar, Meyer, Morlet,
Mexican Hat, Daubechies(4)) were chosen.

To compare the frequency representations of the
wavelets to the AR model, the Power Spectrum Estimation
(PSE) of the latter to the Wavelet Power Spectrum Estima-



tion of the wavelets were calculated:
2

N
Z CWT(n, k)| , “4)

n=1

WPSE(k) =

where N represents the number of points of the signal, k
is the local frequency.

For the locations of the peaks in time are taken into con-
sideration, the Energy Distributions (ED) of the wavelets
have to determine. The ED of a signal is defined as the
square of the modulus of the signal in time:

ED,pig = |z(n)|? 5)
and
M 2
EDuyav(n) =Y CWT (n, k) (6)
k=1

While ED’s of the original signal are obtained out of the
CWT, PSE’s of the AR modeling and obtained from CWT
have to show the same variation at the maximum match;
the normalized root-mean-square error (NRMSE) repre-
sents the similarity.

52 heart failure patients (NYHA III-IV) with ejection
fraction < 0.35, and 50 age matched control subject with-
out significant heart disease were examined. The phono-
cardiograms (PCG) was registered with an own developed
electric stethoscope with a sampling rate of 20 to 8000
Hz. The measurements were repeated twice in a day and
in three consecutive days. The data - with the ECG -
was stored for the further analysis. The following PCG
data may represent the left ventricular dysfunction: faint
first sound (fS1), S3 and S4 gallop sound, systolic mur-
mur in the mitral auscultation area (MR). These four en-
tities were searched manually and with automated detec-
tion in the wavelet TFR maps of the signal. Two cardi-
ologists evaluate the signals independently. The accuracy
of the observers in identifying the four signs as compared
with the PCG gold standard was expressed as positive and
negative predictive values (PPV and NPV). The intraob-
server agreement between pairs and groups of observers
and the gold standard was quantified using the weighted
kappa statistic; a kappa (k) value of < 0.20 indicates
poor or slight agreement, 0.21 to 0.60 is fair moderate,
and 0.61 to 1.00 is substantial to almost perfect agreement
[7, 8,10, 11].

3. Results

The six registrations of the 52 heart failure patient (312
cases) were analyzed in the WSOLA study. Two indepen-
dent cardiologist analyzed the PCGs, the original and the
MTSM +WSOLA registrations. The rate of concordance
for S3, S4, and a systolic regurgitant murmur were 62%,
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Figure 1. WPSE (wavelet method) vs. PSE (AR model)

59%, 69%, respectively for the original PCG, and 76%,
89%, 71% for the MTSM +WSOLA data. The best per-
formance was achieved in the detection of S4 (p < 0.001),
for S3 the value was also significant (p < 0.01).

Figure 1 shows the results of the autoregressive/wavelet
analysis study for the heart sound and systolic murmur
analysis comparing the WPSE’s to PSE using AR mod-
eling.

All wavelets, except the Morlet shows an incorrect spec-
trum. At the frequencies near to 100 Hz, the Daub4 spec-
trum is acceptable, but at higher frequencies the values of
the Haar and Meyer are wrong. When the localization of
the peaks in time is taken into consideration, the lower val-
ues of the NRMS shows better prediction. One can pick
the NRMSE values for the different wavelets from Table
1.

Table 1. The NRMSE values

Wavelet NRMSE value
Haar 92.33
Meyer 79.33
Morlet 39.45
Mexican Hat 86.54
Daubechies(4) 69.29

The least NMRSE value of the Morlet transformation
represents the best similarity. In identifying fS1, the mean
PPV was 36%, the mean NPV was 61, for S3 (59%, 78%),
for S4 (51%, 69%), for MR (62%,81%); The overall inter-
observer agreement was K = (.31 in the case of simple
auscultation, and was 0.69 using the wavelet TFR.

4. Discussion and conclusions

The two studies showed several problems in real-life
PCG monitoring. The registration in noisy environment,
the comparation on various days result very hybrid PCG
data. The more sophisticated signal analysis methods give



some possibilities to manipulate the data, but these trans-
formations do not give the ,,Road of Kings”. Our results
confirm the necessity collecting huge PCG database for ex-
pert system learning with or without neural network. The
WSOLA method is suitable to improve the diagnostic con-
fidence of the cardiologist, which is important creating the
reference (,,output layer”) of the database. Using the au-
toregression modeling, the undesired attributes in the CWT
representation are observed on for all wavelets, the Morlet
wavelet is the only exception. These two studies are the
beginning of a real-life expert system of automated PCG
monitoring, where the we would solve other important
problems, namely how the define for the computer some
features of auscultation (e.g. harsh, blowing, musical, vi-
bratory, buzzing quality, measuring the effect of respira-
tion, how to define the Levine-Harvey grading of loudness,
or the ,,band-like”/crescendo-decrescendo fashion).
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