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Abstract

In order to use the ECG as a tool for atrial fibrillation

(AF) analysis, we need to separate the atrial activity (AA)

from other cardioelectric signals. In this matter, some sta-

tistical signal processing techniques, such as Blind Source

Separation (BSS), are able to perform a multi-lead statis-

tical analysis of the ECG with the aim to obtain a set of

independent sources where the AA is included. BSS tech-

niques can be divided in two groups depending on the mix-

ing model. Firstly, in algorithms based on Independent

Component Analysis (ICA) instantaneous mixture of the

sources is assumed. Secondly, in convolutive BSS (CBBS)

algorithms the more realistic case of weighted and delayed

contributions in the generation of the observed signals is

considered. In this paper, a comparison between the per-

formance of ICA algorithms and CBSS algortihms in the

extraction of the AA in AF episodes is developed.

1. Introduction

Atrial fibrillation (AF) is one of the most commonly en-

countered atrial arrhythmias in routine clinical practice [1].

The analysis of the ECG is the most extended noninva-

sive technique in medical treatment of AF. The exhaus-

tive analysis of the AF requires previously to separate the

atrial activity (AA) component from other bioelectric sig-

nals. To this extent, several techniques have been exten-

sively used in order to extract the AA from ECGs of AF

episodes. The early extraction techniques worked in time

domain and obtained the atrial activity by the substraction

of the average QRST complex. This family of techniques

has been well accepted and widely used in medical appli-

cations. However, these techniques are only applied to

the ECG lead where atrial fibrillation is more easily dis-

tinguishable, e.g. V1, and they do not make use of the

information included in every lead. On the contrary, Blind

Source Separation (BSS) techniques make a multi-lead sta-

tistical analysis with the aim to obtain a set of independent

sources that include the AA [2].

Figure 1. The Blind Source Separation (BSS) problem

The main objective of this essay is to test the perfor-

mance of several BSS techniques in the extraction of atrial

activity. In order to do this, we have proposed the testing

environment and we have defined the parameters to mea-

sure the performance of the extraction.

2. BSS concepts

Blind Source Separation (BSS) consists of retrieving a

set of N signals that cannot be directly observed from other

set of M signals that can be observed. The signals to be re-

trieved are called ’sources’, and those that can be observed

are called ’observations’. The observations are formed by

the contribution of all the original sources. The main con-

dition of the source signals to correctly apply BSS to its ex-

traction is their mutual independence [3]. Figure 1 shows

an scheme of the BSS problem. The inputs of the mixing

system, which is also unknown, are the sources and the

outputs are the observations. The BSS algorithms try to

find one separation system that inverts the previous mix-

ture process, so that an estimation of the original sources

is obtained.

The solution of the BSS problem, previously expressed

in general terms, needs the assumption of a mathematical

mixing model. The most frequent assumption is the linea-

rity of the transformation [3]. Within the assumption of

linearity, the simplest mixing model is the instantaneous

linear model. In this case, we can express the observations

xi[n] as [2]:

xi[n] =
N

∑

j=1

aij [n] · sj [n], i = 1, 2, . . . ,M (1)
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where {s1[n], . . . , sN [n]} is a set of original sources that

includes the AA, the ventricular activity (VA), additive

noise and other bioelectric phenomena of the human body.

{x1[n], . . . , xM [n]} is the set of related observations, that

is, the ECG registrations in our particular case. By using

matrix notation, we can write:

x[n] = A · s[n] (2)

The instantaneous linear mixing model is used by the

Independent Component Analysis (ICA) algorithms. An

extension of the linear model is the convolutive linear mix-

ing model, where weighted and delayed contributions of

the sources are considered in the generation of the obser-

vations [2]. This model is used by the convolutive BSS

(CBSS) algorithms and can be expressed as [2]:

xi[n] =
N

∑

j=1

hij [n] ∗ sj [n], i = 1, 2, . . . ,M (3)

where ∗ is the convolution operator and hij factors repre-

sent Finite Impulse Response (FIR) filters.

In both linear mixing models, the solution of the BSS

problem implies to approximate a W matrix as the inverse

of A, so that an estimation of the original sources (ŝi) can

be obtained.

3. Tested algorithms

ICA algorithms, e.g. FastICA, have successfully been

applied to extract the AA from ECG of AF episodes [4].

This successful application is obtained by considering that

the error introduced as a consequence of assuming instan-

taneous mixtures is negligible. On the contrary, CBSS

algorithms have not been applied yet to the extraction of

the AA. In this work, we test the performances of four

CBSS algorithms in the extraction of the AA from FA

ECG registrations. All of them were originally developed

to optimize the separation of audio sources in reverberant

spaces (i.e. convolutive mixtures) [5]. Theses algorithms

are the Multi-channel Blind Least Mean Square (MBLMS)

algorithm [6], the Time-Delayed Decorrelation (TDD) al-

gorithm for convolutive mixtures [7], the Infomax algo-

rithm [8] based on the information theory, and the Convo-

lutive Blind Signal Separation (CoBliSS) algorithm [9].

4. Notation

The performance of the algorithms is measured by using

two parameters. On the one hand, SIRAA measures the

performance as an improvement of a signal to interference

ratio. Considering xi as the observation with the highest

contribution of AA, the signal to interference of xi is de-

fined as [5]:

SIRo
AA = 10 log

E{(hij ∗ sj)
2}

E{(
N

∑

k=1

k 6=j

hik ∗ sk)2}

(4)

In the same way, considering that ŝp is the estimated source

with the highest contribution of AA, the signal to interfe-

rence of ŝp is [5]:

SIRe
AA = 10 log

E{(gpj ∗ sj)
2}

E{(
N

∑

k=1

k 6=p

gpk ∗ sk)2}

(5)

where gpk are the FIR filters of the G global system matrix

so that G = W ∗ A. Finally, by using logarithmic units

the SIRAA is defined as:

SIRAA = SIRe
AA − SIRo

AA (6)

On the other hand, we also measure the performance of the

extraction as a cross-correlation between the original AA

and the estimated AA [3]:

RAA =
E{sAA · ŝAA}

√

E{s2AA}E{ŝ2AA}
(7)

where sAA and ŝAA are the original and the estimated AA

respectively.

5. ECG database

The calculation of the parameters defined in the previous

section needs the original sources and the mixing matrix to

be known. Given that all of them are unknown in the case

of real ECGs, we have established two environments of

synthesized AF ECGs, so that the measure parameters can

be calculated.

In the first environment, 15 pairs of separated AA and

VA recordings of FA ECG episodes are mixed by aleatory

A mixing matrices which FIR filters length changes from 1

to 8. All recordings are 12 seconds long and were obtained

at a sampling rate of 1 kHz. The length of the W matrix is

an adjustable parameter in the CBSS algorithms that have

been changed in the tests from the lowest allowed value

(one or two depending on the algorithm) to 32. The value

of 32 has been chosen by considering 32ms as a reasonable

maximum propagation delay for all the bioelectric signals

in the human body [10].

In the second environment, synthesized FA 12-leads

ECG are obtained by adding separated AA and VA of every

lead:
x = xAA + xAV (8)
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where xAA is a matrix that contains the 12 auricular sig-

nals, xAV is a matrix that contains the 12 corresponding

ventricular signals and x is the 12 leads synthesized ECG.

All resulting ECG recordings last for 8 seconds and are

sampled at 1 KHz. This second environment comprises 20

synthesized ECGs.

6. Results

Tables 1 to 8 show the first environment testing results

for every tested CBSS algorithm. Mean and standard devi-

ation (STD) values of SIRAA and RAÂ are calculated for

different filters lengths of the mixing matrix (Nm) and dif-

ferent filters lengths of the separation matrix (N ). Every

table includes the FastICA algorithm results obtained in

the same testing conditions as the corresponding CBSS al-

gorithm. This was made to compare ICA and CBSS meth-

ods.

In table 1 we can appreciate that FastICA SIRAA mean

values are higher than MBLMS SIRAA mean values for

any value of Nm and N . More specifically, FastICA

SIRAA mean values are around 40 dB whereas MBLMS

SIRAA mean values are lower than 5 dB. In other words,

the application of MBLMS to mixtures of AA an VA does

not yield any source signal separation. We obtain the same

conclusions by looking at table 2 where we can see that

FastICA RAÂ values are always near to one (i.e. the origi-

nal and estimated AA are very similar) whereas MBLMS

RAÂ values are near to zero (i.e. the quality of the separa-

tion is very poor).

An equivalent analysis can be made on the rest of the

CBSS algorithms results. Tables 3 and 4 show that va-

lues obtained by the TDD algorithm are much better than

values obtained by MBLMS. The order of TDD SIRAA

mean values and FastICA SIRAA mean values is the same.

Nevertheless, FastICA SIRAA mean values are in all cases

around 4 dB higher than TDD SIRAA mean values. Tables

3 and 4 also show that TDD behavior worsens when mix-

ing matrix FIR filters length increases, since both SIRAA

and RAÂ decrease proportionally. Tables 5 and 6 show that

Infomax algorithm presents a similar behavior to TDD,

that is, both SIRAA and RAÂ are slightly lower than the

respective FastICA values. Moreover, the higher Nm is the

lower SIRAA and RAÂ are. Finally, tables 7 and 8 show

the CoBliSS testing results. In this case, SIRAA mean val-

ues are around two decades lower than FastICA SIRAA

mean values, that is, the performance in the extraction of

the AA is much better than the performance obtained by

MBLMS. However, it does not reach the performance ob-

tained by TDD and Infomax.

Second environment performance was only tested for

the Infomax algorithm, given that this is the only analyzed

CBSS algorithm that simultaneously offers good AA ex-

traction quality in the first environment and the possibility

of being successfully adapted to the 12 leads ECG case.

We summarize the results of the second environment in ta-

ble 9, where the values of SIRAA and RAÂ are presented

together. We consider seven different unmixing FIR Filters

length, i.e. N = 2, 4, 8, 16, 32, 64 and 32. It can be seen

that FastICA SIRAA mean value is several decibels above

Infomax SIRAA mean values. Furthermore, FastICA co-

rrelation is nearer to one than Infomax correlation.In other

words, the AA estimated by FastICA is more similar to the

original AA than the AA estimated by Infomax.

Table 1. MBLMS algorithm SIRAA

Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 0.987 2.321 0.320 0.266 0.274 0.280 0.192 0.202

4 0.999 2.216 0.964 0.948 0.846 0.999 0.590 0.720

8 1.669 4.533 2.137 2.609 1.896 2.547 1.469 2.099

16 1.701 5.849 2.747 3.160 2.354 2.704 2.127 2.964

32 1.417 6.585 2.514 2.886 2.275 2.616 2.265 3.069

ICA 37.643 17.031 28.316 10.391 28.370 7.458 23.995 8.692

Table 2. MBLMS algorithm RAÂ
Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 0.232 0.194 0.220 0.143 0.172 0.118 0.152 0.103

4 0.082 0.076 0.074 0.048 0.058 0.032 0.049 0.019

8 0.143 0.126 0.136 0.096 0.103 0.088 0.085 0.075

16 0.129 0.109 0.131 0.081 0.091 0.068 0.074 0.046

32 0.116 0.080 0.116 0.077 0.089 0.070 0.081 0.063

ICA 0.997 0.002 0.923 0.183 0.943 0.115 0.847 0.182

Table 3. TDD algorithm SIRAA

Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 31.597 12.556 26.951 9.929 24.763 8.967 23.121 8.091

4 30.535 10.424 27.399 7.983 24.878 7.711 23.434 8.189

8 33.561 19.427 27.003 10.869 23.805 9.261 24.122 8.864

16 32.831 15.917 27.329 10.723 23.718 9.623 23.190 9.093

32 31.657 13.954 24.561 10.409 22.770 9.393 22.664 9.114

ICA 36.692 8.335 30.597 7.190 27.414 7.542 25.543 6.688

Table 4. TDD algorithm RAÂ
Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 0.960 0.091 0.915 0.176 0.900 0.144 0.809 0.194

4 0.958 0.122 0.915 0.195 0.893 0.178 0.813 0.233

8 0.922 0.200 0.897 0.217 0.864 0.215 0.789 0.273

16 0.902 0.212 0.839 0.255 0.821 0.245 0.742 0.291

32 0.827 0.264 0.784 0.292 0.737 0.300 0.705 0.294

ICA 0.997 0.002 0.950 0.147 0.929 0.134 0.857 0.204

Table 5. Infomax algorithm SIRAA

Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 28.543 14.225 24.039 9.593 26.122 6.720 17.891 8.612

4 28.350 13.924 24.720 10.019 25.973 6.792 17.683 8.684

8 30.146 15.489 24.588 10.195 26.248 6.906 18.013 8.654

16 30.278 16.214 24.437 10.445 26.543 7.378 18.250 8.723

32 29.863 15.051 25.183 10.855 26.459 8.009 19.039 9.466

ICA 34.981 9.944 28.416 8.158 28.017 7.298 19.069 8.952
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Table 6. Infomax algorithm RAÂ
Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 0.949 0.127 0.924 0.141 0.924 0.119 0.763 0.247

4 0.955 0.091 0.926 0.111 0.910 0.119 0.741 0.245

8 0.938 0.079 0.900 0.115 0.876 0.120 0.713 0.238

16 0.835 0.134 0.804 0.141 0.779 0.150 0.647 0.222

32 0.627 0.162 0.584 0.193 0.567 0.180 0.479 0.203

ICA 0.997 0.003 0.930 0.113 0.937 0.125 0.783 0.247

Table 7. CoBliss algorithm SIRAA

Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

2 21.258 10.643 18.529 8.176 18.175 5.898 13.603 5.600

4 21.244 9.549 18.020 9.183 17.647 5.853 12.429 6.401

8 20.110 7.898 17.657 7.427 17.547 5.522 12.323 6.702

16 17.416 8.377 17.741 6.431 17.974 5.153 12.754 7.052

32 13.176 7.322 14.138 6.758 15.854 5.916 12.246 6.399

ICA 36.420 13.915 28.805 10.686 28.420 7.633 20.303 10.058

Table 8. CoBliSS algorithm RAÂ
Nm 1 2 4 8

N Mean STD Mean STD Mean STD Mean STD

1 0.893 0.133 0.844 0.197 0.828 0.149 0.169 0.097

2 0.762 0.104 0.683 0.188 0.590 0.266 0.673 0.224

4 0.360 0.152 0.318 0.160 0.761 0.234 0.482 0.194

8 0.308 0.160 0.320 0.162 0.714 0.144 0.218 0.139

16 0.307 0.179 0.326 0.175 0.544 0.144 0.258 0.147

32 0.154 0.130 0.160 0.121 0.301 0.149 0.273 0.143

ICA 0.996 0.020 0.919 0.190 0.938 0.126 0.751 0.261

Table 9. Second environment Infomax SIRAA and RAÂ
SIRAA R

AÂ

N Mean STD Mean STD

2 18.6805 5.5026 0.7369 0.1625

4 18.4218 5.5948 0.7223 0.1698

8 19.7927 5.9762 0.7645 0.1549

16 18.9585 5.3326 0.7504 0.1525

32 18.7659 5.1429 0.7428 0.1625

64 17.2471 4.8498 0.7090 0.1314

128 16.7937 5.7177 0.6875 0.1759

ICA 22.8142 4.8623 0.8385 0.1635

7. Conclusions

The analysis of results leads us to conclude that not all

CBSS algorithms are useful to extract AA from ECGs of

FA episodes, given that the performances of these algo-

rithms are very different. Another important conclusion is

that CBSS algorithms performance is optimal when both

N and Nm tend to one, that is, when both mixing and se-

paration processes comply with the instantaneous model.

Hence the instantaneous linear mixing model is a good

model for the bioelectric mixtures in the human body.

TDD and Infomax are the CBSS algorithms with the

best performance in the AA extraction. In addition, Info-

max is the CBSS algorithm that best matches the 12-leads

ECG case. Finally, even when when we assume controlled

convolutive mixtures (Nm > 1 in the first environment),

the FastICA algorithm, which uses the instantaneous linear

mixing model, presents best performance than CBSS algo-

rithms. Consequently, CBSS algorithms need an improve-

ment to reach at least the performance of ICA algorithms.

In fact, the instantaneous linear mixing model is a particu-

lar case of the convolutive mixing model where FIR filters

length of the mixing and separation matrices are equal to

one (Nm = N = 1).
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