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Abstract

A parametric decomposition of the smoothed Wigner-

Ville distribution is applied to estimate the instantaneous

frequency and amplitude of the LF and HF components of

HRV during stress testing. It is assumed that the instan-

taneous frequencies of the LF and HF components may

vary linearly with time during stress testing, and that the

frequency of the HF component can be approximated by

the respiratory frequency. The effect of the inclusion of “a

priori” information of respiratory frequency on the esti-

mation of HRV parameters is studied. Results on a sim-

ulation study show that the inclusion of “a priori” infor-

mation does not affect significantly the estimation of the

LF parameters. However, the SD of the estimation error

of the HF amplitude is reduced at the expense of intro-

ducing a bias for high SNRs while both the mean and SD

of the HF amplitude error are decreased for lower SNRs

(2.6%±1.9% against 3.1%±2.6% for a SNR of 20 dB and

7.6%±5.8% against 12.0%±9.7% for a SNR of 10 dB).

1. Introduction

Time-frequency methods have been extensively applied

in the study of non-stationary heart rate variability (HRV).

That is the case of the non-parametric quadratic time-

frequency distributions, such as the Wigner-Ville distribu-

tion (WD) and every filtered version of the WD, known as

the Cohen’s class.

An automatic decomposition of the smoothed Wigner-

Ville distribution (SWD) has been applied to estimate the

instantaneous frequency and power of the LF and HF com-

ponents of HRV during tilt test [1]. The method performs

a parametric decomposition of the instantaneous autocor-

relation function (ACF) of HRV, based on the fact that the

ACF of a signal composed of complex sinusoids whose in-

stantaneous frequencies may vary linearly in time, can be

decomposed at each time instant as a sum of complex si-

nusoids.

During stress testing HRV is highly non-stationary and

it can be modeled as a sum of sinusoids with linearly vary-

ing instantaneous frequencies. The frequency of the LF

component can be assumed constant during the test while

the frequency of the HF component can be assumed to in-

crease linearly from the beginning of the test to the stress

peak and decrease linearly in the recovery phase. It is

widely accepted that the HF component of HRV is driven

by the action of the parasympathetic branch of the auto-

nomic nervous system and that it is affected by respira-

tion [2]. Based on this physiological knowledge and exper-

imental observations, the frequency of the HF component

can be approximated by the respiratory frequency, which

may be derived directly from simultaneously recorded res-

piratory signals or indirectly from the ECG [3].

The objective of this work is twofold: first, to evalu-

ate the performance of the method proposed in [1] to esti-

mate the instantaneous frequency and power of the LF and

HF components of HRV during stress testing and, second,

to study the effect of the inclusion of “a priori” knowl-

edge, such as the respiratory frequency, on the estimation

of HRV parameters.

2. Methods and materials

2.1. The SWD and the ACF

The smoothed windowed discrete Wigner-Ville distribu-

tion of the discrete signal x(n) is defined by [4]

X(n,m)=2

N−1
∑

k=−N+1

|h(k)|2
M−1
∑

p=−M+1

g(p)rx(n + p, k)e
−j2πkm/N ,

(1)

where n and m are the discrete time and frequency

indexes, respectively, h(k) is the frequency smoothing

symmetric normed window of length 2N − 1, g(p) is

the time smoothing symmetric normed window of length

2M − 1 and rx(n, k) is the instantaneous ACF defined as

rx(n, k) = x(n + k)x
∗(n− k). The SWD can be seen as

the Fourier transform of the filtered ACF

sx(n, k) = |h(k)|
2
M−1
∑

p=−M+1

g(p)rx(n + p, k). (2)
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The method proposed in [1] is based on the fact that if

x(n) is composed of complex sinusoids whose instanta-

neous frequencies may vary linearly in time, then sx(n, k)
can be approximated by a sum of complex damped sinu-

soids, corresponding to both signal and interference terms,

sx(n, k) ≃

I
∑

i=1

ci(n)e
−bi(n)keωi(n)k, k = 0, . . . , N−1,

(3)

where ci(n) denotes the amplitude, bi(n) the damping fac-

tor and ωi(n) the angular frequency of the ith term.

The analytic signal of the HRV during stress testing

x(n) is assumed to be composed of two complex sinu-

soids: one with constant instantaneous frequency fLF and

amplitude ALF, representing the LF component, and the

other one with linearly varying instantaneous frequency

fHF(n) = 2αn + β and amplitude AHF, representing the

HF component,

x(n) = ALFe
2πfLFn +AHFe

2π(αn2+βn). (4)

If a rectangular window g(p) of length 2M − 1 and an

exponential window |h(k)|2 = e−γ|k| are used1, then

sx(n, k) = |ALF|
2e−γ|k|e2πfLF2k + (5)

1
2M−1 |AHF|

2e−γ|k|
sin(2π2α(2M−1)k)

sin(2π2αk) e2π(2αn+β)2k +

1
2M−12ℜ{ALFA

∗
HF
}e−γ|k|e2π(fLF+fHF(n))k ·

M−1
∑

p=−M+1

{

cos
[

2π{α[(n+p)2+k2]+(β−fLF)(n+p)}
]

e2π2αpk
}

,

which can be approximated as in (3). The term related to

the HF component can be approximated as a damped com-

plex sinusoid since it has a varying amplitude, which can

be approximated by an exponentially decaying function of

k. The amplitude of the interference term, i.e. the last

term in (5), is supposed to be largely reduced by the time

smoothing and it will be treated as noise.

2.2. Estimation of the parameters

The parameters of the complex damped sinusoids of

sx(n, k) in (3) can be estimated from a LS linear prediction

problem and a singular value decomposition to make the

estimation robust against noise [5]. The parameters bi(n)
and ωi(n) are estimated from the zeros of the prediction

error filter polynomial of order L, zi(n) = e
−s∗

i
(n), with

si(n) = −bi(n) + ωi(n), and ci(n) as the LS solution to

(3). Then, the frequencies and amplitudes of the complex

sinusoids of x(n) are estimated as

1The time smoothing window g(p) should be chosen as a compromise
between reducing the amplitude of the interference term while follow-
ing the non-stationary characteristics of x(n). The frequency smoothing
window h(k) should be chosen so as to increase frequency resolution
while ensuring that sx(n, k) can still be modeled as in ( 3).

f̂i(n) =
1

2

ω̂i(n)

2π
, Âi(n) =

√

ĉi(n). (6)

The LF and HF components are identified as the sinusoid

with highest power whose estimated frequency f̂i lies in

the band [0.04,0.15] Hz and [0.15,HR/2] Hz, respectively.

2.3. Inclusion of “a priori” information

It is generally accepted that the HF component of HRV

reflects respiratory sinus arrhythmia [2]. This component

is synchronous with the respiratory frequency. Then, “a

priori” information about respiration can be included in

the estimation of the HRV components. If the zero zHF

associated to the HF component is known, the estimation

of the prediction error filter polynomial can be solved as

a constrained LS problem. The knowledge of the zero

zHF = e
bHF+2π2fHF(n) requires the knowledge not only of

the instantaneous frequency fHF(n), which is approximated

by the respiratory frequency, but of the damping factor bHF.

One simple approach is to approximate the envelope of the

functionm(k) = 1
2M−1

sin(2π2α(2M−1)k)
sin(2π2αk) by an exponen-

tial fit e(k) = e−δ|k|, then, the damping factor bHF can

be approximated by bHF = γ + δ. As the function m(k)
is periodic with period π, the approximation is only valid

for 2π2αk < π
2

, i.e. 8αk < 1. Due to the exponential

window |h(k)|2 = e−γ|k|, the first samples of m(k) are

those most influencing the parameter estimation. The first

samples ofm(k) are approximated by a LS exponential fit

e(k) = e−δ|k|, which can also be approximated by a linear

fit e(k) ≃ 1− δ|k| for |k|δ≪ 1, giving a value of δ which

is function of 2α, i.e. the rate of variation of fHF(n).

2.4. Time varying smoothing window

The amplitude and bandwidth of the spectral peak cor-

responding to the HF component is dependent on the rate

of variation of fHF(n), 2α, and on the length of the time

smoothing window 2M − 1. As a result, for a fixed time

smoothing window length 2M − 1, the estimation error

of AHF depends on the rate of variation of its frequency

(2α), being larger for faster variations. In order to dimin-

ish the differences between estimation errors of AHF for

different values of 2α, a time varying SWD can be ap-

plied, in which the time smoothing window length 2M −1

changes with the value of 2α, so that
sin(2π2α1(2M1−1)k)

sin(2π2α1k)
=

sin(2π2α2(2M2−1)k)
sin(2π2α2k)

. If sin(2π2α1k) ≃ sin(2π2α2k) ≃ 1,

the former relation can be written as 2α12α2 =
2M2−1
2M1−1

.

2.5. Simulation study

A simulated HRV signal is generated such that its ana-

lytic function x(n) has the form of (4). The following pa-

rameter values are used: ALF = 1, fLF = 0.1Hz, AHF = 1,
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fHF(n) =

{

2α1n+ β1 to ≤ n ≤ tp
2α2n+ β2 tp < n ≤ te

(7)

where α1 =
1
3000 Hz/s, β1 = 0.25 Hz, α2 = −

1
1000 Hz/s,

β2 = 2.05 Hz, to = 0 s, te = 900 s and tp = 0.75(te −
to) + to s. The sampling frequency is set to fs = 4 Hz.

The values of the parameters fLF, fHF(n), to, te and tp are

selected based on the observation of actual HRV signals

during stress testing, using rates of variation of fHF(n), i.e.

α1 and α2, always steeper than observed in reality [3].

3. Results

The time varying SWD is applied to the simulated signal

x(n) using a time varying rectangular window g(p) (with

2αi(2Mi − 1) =
1
120 Hz, i = 1, 2) and an exponential

window h(k) of length 2N − 1 = 256 samples (64 s) and

damping factor γ = 1
64 samples−1 (16 s−1). It is displayed

in Fig. 1, where it can be appreciated that the amplitude

and bandwidth of the spectral peak of the HF component

are approximately the same independently of the value of

2α. The respiratory frequency is supposed to be known
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Figure 1. The time varying SWD of the simulated x(n)
using adaptive time smoothing window length.

and to be exactly equal to fHF(n). The first 2N−1
4

samples

ofm(k) are used to estimate the damping factor bHF.

The inclusion of “a priori” information of respiratory

frequency does not significantly affect the estimation of

the LF parameters, f̂LF and ÂLF. However, the variance of

the estimated HF amplitude ÂHF is considerably reduced

at the expense of increasing the bias, as it can be seen in

Fig. 2(top). Outlier estimates are observed in the vicinity

of time instant tp, where 2α changes and the assumption of

components with linearly varying instantaneous frequen-

cies does not hold.

Estimation errors for the amplitude and frequency of the

LF and HF components are computed when white gaussian

noise is added to the simulated HRV signal for different

values of the order L and different signal-to-noise ratios

(SNR, defined as the ratio between ALF and the standard

deviation (SD) of the noise). Figure 2(bottom) displays
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Figure 2. Amplitude of the HF component ÂHF (in arbi-

trary units, a.u.) estimated by the method with (solid line)

and without (dotted line) inclusion of “a priori” informa-

tion of respiratory frequency using L=12 for an infinity

SNR (top) and for a SNR of 20 dB (bottom).

ÂHF for a SNR of 20 dB and averaged among 100 realiza-

tions, estimated with and without inclusion of “a priori”

information of respiratory frequency.

Mean and SD of the estimation errors over time are com-

puted and averaged among 100 realizations, excluding the

beginning, the end and the vicinity of tp, where assump-

tions do not hold. The LF parameters are estimated accu-

rately both by the method in 2.2 and in 2.3. The fLF is un-

derestimated with a relative error lower than -0.6%±1.8%

(mean±SD) for values of L between 10 and 20 and SNRs

as low as 10 dB. The mean estimation error of ALF is be-

low 0.5% for SNRs above 20 dB, although its SD increases

with decreasing SNR up to 4%. The estimation of fHF with-

out “a priori” information is accurate (estimation error be-

low 0.5%±0.5%) up to SNRs of 15 dB. The estimation of

AHF is the most affected by the inclusion of “a priori” infor-

mation of respiratory frequency. The mean and the SD of

the absolute estimation error of AHF,m|∆AHF
| and σ|∆AHF

|,

are displayed as a function of L for a SNR of 20 dB in

Fig. 3, and as a function of the SNR for a value of L=12 in

Fig. 4.

For high SNRs (> 30 dB) σ|∆AHF| is reduced by the in-

clusion of “a priori” information of respiratory frequency

at the expense of an increasing m|∆AHF|. For lower SNRs

(< 30 dB), not only σ|∆AHF| is reduced but also m|∆AHF|

decreases, being this improvement more notorious for

lower SNRs. For a SNR of 5 dB an estimation error of

14%±11.5% against over 22%±17% is achieved when “a

priori” information of respiratory frequency is included.

For SNRs lower than 5 dB estimation errors are unaccept-

able in HRV analysis. The SNR in real HRV signals may
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Figure 3. The mean m|∆AHF
| (top) and SD σ|∆AHF

| (bot-

tom) as a function of L for a SNR of 20 dB with (‘×’) and

without (‘*’) inclusion of “a priori” information.
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Figure 4. The mean m|∆AHF
| (top) and SD σ|∆AHF

| (bot-

tom) as a function of SNR forL=12 with (‘×’) and without

(‘*’) inclusion of “a priori” information.

be below 25 dB, assuming typical values of HRV and mis-

alignment errors over 1 ms, which makes the proposed

technique work in the range of improved bias and vari-

ance. It should be pointed out that estimation errors using

the method in 2.2 are dependent on the order of the back-

ward linear prediction problem L, being usually lower in

mean and higher in SD as L increases. However, estima-

tion errors when “a priori” information of respiratory fre-

quency is included are similar independently of the value

of L, which may be an advantage when the order L is un-

known and must be guessed.

4. Discussion and conclusions

In this work, the method proposed in [1], based on

the automatic decomposition of the SWD using a LS ap-

proach, has been successfully applied to estimate the in-

stantaneous frequency and amplitude of the LF and HF

components of simulated stress testing HRV signals for

SNRs over 10 dB. The inclusion of “a priori” information

of respiratory frequency as the frequency of the HF com-

ponent has been addressed. For high SNRs the inclusion of

“a priori” information of respiratory frequency reduce the

SD of the HF amplitude estimation errors at the expense

of introducing a bias. However, for lower SNRs both the

mean and the SD of the estimation errors are reduced.

It must be pointed out that even if the method has been

designed and optimized for analysis of HRV during stress

testing, its general features make it applicable in any HRV

studies in which “a priori” information of respiratory fre-

quency is available (i.e. patient monitoring, sleep studies,

neurovegetative tests).
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