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Abstract 

The Information about cardiac mechanical 

performance is of critical importance in understanding 

the etiology of heart diseases. However, little work has 

been done to date, to understand the relationship of 

cardiovascular diseases to the global cardiac motion 

patterns. In this paper we address the problem of 

distinguishing between normal and abnormal motion 

patterns in cardiac echo videos. Specifically, we describe 

the overall motion of the heart using average velocity 

curves. We then detect characteristic patterns in these 

curves that help distinguish normal from abnormal 

motion. The motion patterns observed in normal and 

abnormal groups using the extracted features are found 

to be easily separable. 

 

1.  Introduction 

The Information about cardiac mechanical 

performance is of critical importance in understanding the 

etiology of heart diseases. However, little work has been 

done to date, to understand the relationship of 

cardiovascular diseases to the global cardiac motion 

patterns. Specifically, quantitative measures of describing 

motion patterns to more easily separate normal from 

abnormal cardiac echo motion are lacking.  

Discerning motion abnormalities such as when the 

myocardium doesn’t contract or contracts significantly 

less than the rest of the tissue, is difficult, in general for 

humans. Unlike the interpretation of static images such as 

X-rays, it is harder to describe the nature of the 

abnormalities in moving tissues. Physicians often resort to 

describing motion abnormalities using qualitative terms 

such as ‘irregular motion’, ‘decay towards the end of a 

heart beat’, or ‘the twist is not firm enough’, etc.  

 In this paper, we present a quantitative measure of 

describing motion patterns so as to more easily separate 

normal from abnormal cardiac echo motion. 

Distinguishing between normal and abnormal cardiac 

echo motion is easier than characterizing the nature of the 

abnormality (eg. Mitral valve prolapse), but is often the 

first step whose automation can considerably shorten the 

time and costs associated with a diagnosis. 

 While there is considerable work in segmentation, 

tracking and estimation of cardiac wall motion [1-5], 

relatively little work has been done to date to understand 

the relationship of cardiovascular diseases to the global 

cardiac motion pattern.  

2.  Describing cardiac motion 

Cardiac motion has a very complicated 3D non-rigid 

motion pattern. It involves twist, rotation, and 

contraction, which make it very difficult to describe all its 

characteristics through common feature extraction 

mechanisms. To model the truly non-rigid nature of 

cardiac motion, therefore, we utilize a representation of 

actions proposed earlier called the action cylinder [4]. 

The action cylinder was shown to be a robust 

representation of general actions of rigid, articulated and 

completely non-rigid motion, such as flowers moving in 

the wind [6]. To extract motion information from echo 

videos, we specifically focus on the axis of the cylinder 

and approximate it by an average velocity curve [4]. The 

average velocity curve is a temporal trajectory derived 

from successive instantaneous changes in direction and 

extent of average velocity. It is obtained by averaging the 

optical flow per frame. If we denote the intensity by 

I(x,y,t), the spatio-temporal variation of brightness 

patterns is given by the brightness change constraint 

equation as  

tyx IvIuI /?-
    (1) 

 where 
),( yx II
are the partial derivatives of I, and u and v 

are the x and y components of the optical flow vector.  

Assume the optical flow in an object region O  

in frame k be represented by the vectors 
NjMivuVU ijijkk ,...,2,1,,...,2,1),,(),( ??? , where ),( ijij vu  are 

the velocity vectors per pixel (i, j) within O in frame k. 

Then the average velocity vector for O in frame k is given 

by ),( avgavg sf , where 
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For a 2-D image sequence, the spatio-temporal velocity 

curve is a curve in 3-D (2-D space + time) formed from 

successive average velocity vectors. Using a parametric 

representation based on time, the curve can be represented 

as a set of 2-D points 1,...1,0)),(),(()( /?? TktytxtC  for a 

sequence of length T where 

)cos()()1( avgavgtxtx sf-?- , )sin()()1( avgavgtyty sf-?-   

with (0,0)y(0)) (x(0), ? .    (3) 

 

Figure 1b illustrates the 3D average velocity curve for 

a cardiac echo video of a patient depicting Lateral 

Ventricular Global Hypokinesis shown in Figure 1a. The 

X={x(t)} and Y={y(t)} are components shown in 

Equation 3 and the time t is represented in terms of video 

frames. Here, the tracking of object began at frame 5. 

This plot represents average motion within a single 

heartbeat..  

 

Figure 1: Illustration of feature extraction from cardiac 

echo videos. (a) Cardiac echo video snapshot. (b) 

Average velocity curve derived from the corresponding 

video. 

To extract the average velocity curve, we compute 

motion in successive frames by subtracting intensity at 

identical locations in frames that are n apart (where we 

experimented with choice of n=5 or 10, i.e. frames that are 

5 or 10 apart). This usually gets rid of the static portions 

such as text overlays and other markers in the video, 

leaving mostly the heart motion except from some noise in 

the image. Since the dominant object is always going to be 

the heart against a still background, this process also 

segments the object from the background so that the 

average velocity computations given by Equations 2 and 3 

reflect the motion of the heart.  

2.1. Extracting features from AVC 

On examining the average velocity curves for various 

diseases as shown in Figure 2, it was observed that the 

average velocity curves of normal cardiac motions are 

more evenly distributed around a mean velocity. This is 

consistent with normal wall motion. Similarly, we 

observed that a lack of sharp peaks in the average velocity 

curves, can be an indicator of abnormal cardiac motion. 

Thus a ratio of flat peaks to the original number of peaks 

can serve as a reliable feature to help distinguish between 

cardiac echo videos.  

Let the time-average of X and Y component of AVC 

be denoted by MX and MY respectively. Let  

} ’XMtXtXX ‡?- )(|)( , } ’XMtXtXX ~?/ )(|)(  (4) 

Thus X+ and X- represent the number of velocity 

values that are above and below the mean velocity 

respectively. Similar measure can be defined for the Y 

component of average velocity. Then the average velocity 

distribution ratio is given by  
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To measure the fraction of flat peaks in the average 

velocity curve, we record the number of peaks that are 

within a threshold of the maximum height of a peak 

(depth of a valley) in the average velocity curve maxF as 
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FY can be defined similarly. Then the flat peak ratio is 

given by  

* +YXavg FF
N

F -?
2

1
   (7) 

where N is the number of time samples available.  

 

The features we extracted from AVC themselves have 

several advantages. First, since the average velocity 

distribution ratio and the flat peak ratio are normalized 

with respect to the samples, they are independent of the 

heart rate. So patient data reflecting fast or slow heart 

beats can be still be retrieved in a uniform way. Similarly, 

since they are normalized with respect to time units, they 

are invariant to the number of heart beats over which the 

videos were recorded. This is particularly important since 

a number of videos we tested had variable number of 

heart beats and these could be processed unaffected 

without segmentation of the videos per heart beat.  

Since AVCs record projected motion, they are affected 

by changes in viewpoint. Hence the feature values are 

different for the same disease under long and short axis 

views. Figure 2 shows feature distribution of one of the 

data sets we experimented with that consisted of multiple 

videos corresponding to the same disease taken from 

different patients and using different view points (long In 

general though, this is not a problem, since only a small 

number of fixed viewpoints are used to collect the cardiac 

echo data. Also, such metadata is often supplied along 

with the diagnostic imaging equipment setting 

information. Within given viewpoints, however, the 
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average distribution of velocity distribution and flat peak 

ratios remain stable features to retrieve matching heart 

motion. 

2.2. Separating normal/abnormal motion  

Let (V1avg, F1avg), (V2avg,F2avg) be the feature vectors 

from two cardiac echo videos V1 and V2. Then the 

distance between the videos is given by the Euclidean 

distance as; 

2

21

2

2121 )()(),( avgavgavgavg FFVVVVD /-/?  (8) 

Thus smaller values of distance indicate similar videos 

with identical videos receiving a 0.0 distance score. This 

distance measure can now be used to cluster normal and 

abnormal motion patterns.  

 Using the above features as a two-dimensional space, 

the cardiac echo videos of normal and abnormal heart 

motion can be easily clustered into two categories. We 

used a simple binary clustering algorithm to separate the 

clusters. Given any new sample data, we extract its 

average velocity curve and compute the same features. 

These are then projected into the clustering space and 

classified using a conventional classification algorithm 

such as a linear classifier.  

3. Results 

To verify the results of our conjecture that the average 

velocity curve and features extracted from it can serve as 

a robust classifier, we experimented with a number of 

cardiac echo data sets. In general, due to privacy 

concerns, the data sets for medical imaging are carefully 

guarded so that only limited data sets are available for 

public experimentation. Among the public data we used 

were three authentic reference sources, namely, the GE 

Vivid online medical library 

 (http://vivdlibrary.com), 

 the trans-esophagus echo (TEE) video collection for Dr. 

Marty London at UCSF: 

(http://www.ucsf.edu/teeecho/),  

training videos on heart diseases from Yale Medical 

School 

(http://info.med.yale.edu/intmed/cardio
/echo_atlas/contents/index.html), 

and congenital heart diseases collection from Yale 

(http://info.med.yale.edu/intmed/cardio
/chd/e_as/index.html).  

 The data sets depicted over 500 cardiac echo videos from 

over 40 cardiac diseases; some are listed in Table 1. 

For each disease, we had one or more views such as 

long axis, short axis, TEE etc. As some of the videos 

depicted multiple heart beat segments, we manually 

segmented the videos at multiples of heart beats to 

augment the data sets so that the combined collection 

consisted of over 532 cardiac echo videos. The un-

segmented videos were also made part of the collection to 

test invariance of features to duration of videos.  

Table 1: Illustration of diseases studied for cardiac 

motion patterns.  

3.1 Discriminability of features 

To show that the features extracted from average 

velocity curves can discriminate between normal and 

diseased heart motion, we recorded the values of the 

average velocity distribution ratio and the flat peak ratio 

for normal and diseased heart motion samples for the 

videos tested. The results for 12 of the videos from the 

GE Medical library collection show that the average 

ratios for normal subjects are around 1.0 and are much 

lower compared to that of the abnormal subjects for the 

average velocity distribution ratio. Similarly, the average 

percentages of the X and Y projections for normal and 

abnormal groups are quite different, where the normal 

ones have a very small percentage of flat peaks (less than 

20-25%), but the abnormal subjects tend to have higher 

percentage, (more than 29%). Thus the features chosen 

provide sufficient discriminability to separate normal 

from abnormal motion. 

Figure 2 shows the average velocity curves used for 

the feature computations. The underlying videos have 

been collected from different viewpoints (four chamber 

view, short axis view and long axis view, etc.) as well as 

patients with different heart rate and heart sizes. But the 

ranges of values of the features are relatively unaffected 

by the choice of viewpoint and heart rate specifics of 

individuals. 

3.2. Classification accuracy 

Of the 532 training videos, 387 pre-labeled training 

videos were used to form the clusters. The remaining data 

was using for testing the classification accuracy. 

Specifically, we tested the system with 145 query videos 

depicting different diseases and taken under different 

view points including long axis, short axis, 4-chamber, 

Sample diseases  Sample viewpoints 

Pericardial effusion Apical 4-chamber 

Bicuspid disorder Short-axis views 

Mitral valve prolapse Long axis views 

Cardiomyopathy Aortic short-axis 

Normal (no disease)  

Abnormal Akinesis   

LV Lateral Basal Hypokinesis  

LV Concentric Hypertrophy  

Aortic Stenosis  

Mitral insufficiency  
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TEE, etc. Of the 145 videos tested, 130 of them could be 

classified accurately. Thus the majority of the cardiac 

echo videos can be easily discriminated based on velocity 

distribution and flat peak ratios. Figure 3 shows the 

grouping for the GE vivid library collection. The data sets 

are easily separable in the feature space as shown in 

Figure 3. 

The classification errors were skewed in favor of 

normal versus abnormal for some data sets. On analyzing 

the associated videos, it was found that such videos 

demonstrated other abnormalities besides motion 

abnormalities. Not surprisingly, anatomical abnormalities 

that manifest as size and shape differences of the region 

without affecting the motion pattern were classified 

incorrectly by the system.  

4. Discussion and conclusions 

In general, the misclassifications found were attributed 

to two reasons (a) when the features used for 

classification were insufficient, This is particularly the 

case for diseases related to shape abnormalities rather 

than motion abnormalities. (b) when motion involved 

regional motion that is not accurately represented by a 

single average velocity curve for the entire heart motion. 

In this case, it is possible to use pre-segmentation and 

apply the average velocity curve analysis locally to 

selected regions to more accurately reflect regional 

motion characteristics. 

Overall, we found that the majority of cardiac diseases 

due to motion abnormalities could be easily characterized 

and separated from normal cardiac echo videos based on 

the simple features derived from average velocity curve 

described above.  
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Figure 2. Illustration of average velocity curve 

projections (X and Y) for different diseased and healthy 

heart motion cases. Source: GE Vivid-online library.  

 

 

 

Figure 3: Illustration of separation of normal and 

abnormal echo videos for the GE Vivid collection. 
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