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4Unidade de Investigação Matemática e Aplicações, Universidade de Aveiro, Aveiro, Portugal

5CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
6Faculdade de Medicina, Universidade do Porto, Porto, Portugal

Abstract

Heart rate variability (HRV) data display non-

stationary characteristics and exhibit long-range correla-

tion (memory). Detrended fluctuation analysis (DFA) has

become a widely-used technique for long memory estima-

tion in non-stationary HRV data. Recently, we have pro-

posed an alternative approach based on fractional inte-

grated autoregressive moving average (ARFIMA) models.

ARFIMA models, combined with selective adaptive seg-

mentation may be used to capture and remove long-range

correlation, leading to an improved description and inter-

pretation of the components in 24 hour HRV recordings.

In this work estimation of long memory by DFA and selec-

tive adaptive ARFIMA modelling is carried out in 24 hour

HRV recordings of 17 healthy subjects of two age groups.

The two methods give similar information on long-range

global characteristics. However, ARFIMA modelling is

advantageous, allowing the description of long-range cor-

relation in reduced length segments.

1. Introduction

Cardiovascular variables such as heart rate, arterial

blood pressure and the shape of the QRS complexes in the

electrocardiogram, are almost ”periodical” showing some

variability on a beat to beat basis. This variability reflects

the interaction between perturbations to the cardiovascu-

lar variables and the corresponding response of the car-

diovascular regulatory systems. Therefore, both time and

frequency analysis of such variability can provide a quanti-

tative and noninvasive method to assess the integrity of the

cardiovascular system. The discrete series of successive

RR intervals (the tachogram) is the simplest signal that can

be used to characterize heart rate variability (HRV) and has

been applied in various clinical situations [1,2].

Ambulatory long-term HRV series typically correspond

to 100 000 beats in a 24-h recording and display non-

stationary characteristics, exhibiting long-range correla-

tions [3,4]. An analysis of these correlations provides a

means of distinguishing between sleep and wake states [5],

healthy and diseased states [3] and monitoring the effect

of ageing [6]. In recent years, detrended fluctuation analy-

sis (DFA) has become a widely-used technique for the de-

tection of long-range correlations in non-stationary data,

where conventional fluctuation analyses such as power

spectra and Hurst analysis cannot be reliably used [3].

An alternative approach to long-range correlations de-

scription in HRV data, proposed by Leite et al [4], is to

use fractional integrated autoregressive moving average

(ARFIMA) models, which are an extension of the well-

known autoregressive moving average (ARMA) models.

ARFIMA models, combined with selective adaptive seg-

mentation may be used to capture and remove long-range

correlation, leading to an improved description and inter-

pretation of the components in 24 hour HRV recordings

[4].

In this work, DFA combined with segmentation and se-

lective adaptive ARFIMA modelling are used in the de-

scription of the long-term correlation structure in 24 hour

HRV recordings of 17 healthy subjects of two age groups.

2. Long-range dependence

A stationary process x(t)t∈Z is said to have long-range

correlations if there exists a real number γ ∈]0, 1[ and a

constant cρ > 0 such that

ρ(k) ∼ cρ|k|
−γ , k → ∞,
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where ρ(k) = cov[x(t),x(t+k)]
var(x(t)) is the autocorrelation func-

tion. Alternatively, a stationary process x(t)t∈Z is said to

have long-range correlations if there exists a real number

β ∈]0, 1[ and a constant cf > 0 such that

f(ω) ∼ cf |ω|
−β , ω → 0,

where f(.) is the spectral density function.

In this work, two techniques are used to characterize the

long-range correlations: DFA and ARFIMA modelling.

2.1. Detrended fluctuation analysis

DFA [3] has been established as an important tool for the

detection of long-range correlations in non-stationary time

series. The time series x(t) of length N is first integrated

to give

y(i) =

i
∑

t=1

[x(t) − x̄], i = 1, ..., N,

where x̄ denotes the mean of the series. Next the integrated

time series y(i) is divided into segments of equal length

k. In each segment, the local trend yk(i) is calculated by

a least squares line fit. Next, the integrated time series

y(i) is detrended by subtracting the local trend yk(i) in

each segment. The root-mean-square fluctuation of this

integrated and detrended time series is given by

F (k) =

√

√

√

√

1

N

N
∑

i=1

[y(i) − yk(i)]2.

The above computation is repeated for several segments

of length k (different time scales). The relationship on a

log-log graph between F (k) and k can be approximately

evaluated by a linear model F (k) ∼ kα, where α is the

scaling exponent. Values of α > 0.5 for large values of k

indicate long-range correlations in the data.

For stationary data with long-range correlations, γ =
2 − 2α and β = 2α − 1.

2.2. ARFIMA approach

A class of processes with long-range correlations are the

ARFIMA processes. These processes were introduced by

Hosking [7] and have special interest for applications be-

cause of their capability of modelling both short- and long-

term behaviour of a time series.

A stochastic process x(t)t∈Z is an ARFIMA(p, d, q),

p, q ∈ N ∪ {0} and d ∈ R, if it satisfies the equation

φ(B)∇dx(t) = θ(B)ǫ(t),

where ǫ(t)t∈Z is a Gaussian white noise WN(0,σ2),

φ(z) = 1−φ1z−...−φpz
p and θ(z) = 1−θ1z−...−θqz

q

are polynomials such that φ(z) �= 0 and θ(z) �= 0 for |z| ≤
1, B is the backward-shift operator, Bx(t) = x(t− 1), ∇d

is the fractional difference operator defined by

∇d = (1 − B)d = 1 +
∞
∑

j=1

Γ(j − d)

Γ(j + 1)Γ(−d)
Bj ,

and Γ(.) is the gamma function. The parameter d deter-

mines the long-term behaviour, whereas p, q and the cor-

responding parameters in φ(B) and θ(B) allow the mod-

elling of short-range properties. For −0.5 < d < 0.5,

the ARFIMA(p, d, q) is stationary and invertible. More-

over, for 0 < d < 0.5 the process has long-memory.

ARFIMA models are adequate in HRV recordings and

are used to capture and remove long-range correlations in

these recordings [4].

Given a HRV series, x(1), ..., x(N), the estimation of

d can be obtained using the semi-parametric local Whit-

tle estimator (LWE) [8]. Robinson [9] and Velasco [10]

proved that LWE is consistent for −0.5 < d < 1.

For stationary data with long-range correlations, γ =
1 − 2d and β = 2d and d is related to α by d = α − 0.5.

3. Results and discussion

The methodology presented above are applied to exper-

imental 24 hour Holter HRV data of 17 healthy subjects, 7

aged 17-19 years (young) and 10 aged 65-77 years (old),

obtained with a Mortara H-Scribe 12-lead ECG monitor.

Sleeping and waking times were registered in the Holter

diary.

To describe long-range correlations in the long-term

HRV series (approximately 100 000 beats), ARFIMA

modelling combined with selective adaptive segmentation

is used [4]: the long record is decomposed into short

records of variable length and the break points, which mark

the end of consecutive short records, are determined using

the AIC criterion for ARFIMA models. The short records

thus obtained have a minimum length 512 and are subse-

quently modelled using ARFIMA models.

Long-range correlations in this long-term HRV series

are also described by a global scaling exponent, obtained

with DFA for 20 ≤ k ≤ 10000 [3]. In order to obtain

an adequate description of these correlations segmentation

combined with DFA is used: the long record is decom-

posed into short records of constant length L. The short

records are subsequently analysed by DFA for L0.5 ≤ k ≤
L
4 with L = 4096 beats. Using simulations of ARFIMA

models, it was found that this value of L is the minimum

allowable segment length for the estimation of the long-

range correlations with DFA.
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Figure 1. Tachograms of two healthy subjects, 24 hours

Holter recordings, 19 years old (a) and 71 years old (d).

Evolution over 24 hours of α − 0.5 in (b) and (e) and d̂ in

(c) and (f). α is estimated using DFA combined with seg-

mentation (L = 4096 beats) and d̂ using selective adaptive

segmentation combined with ARFIMA models (average of

the short records is 1480 beats in (c) and 1222 beats in (f)).

The dotted lines indicate the sleeping and waking times.

Figure 1 illustrates the typical results for a young (a) and

an old (d) healthy subjects. The estimates α − 0.5, in (b)

and (e) and d̂, in (c) and (f), evolve over time, presenting

a circadian variation. Most of the values estimated during

the sleeping period range from 0 to 0.5, whereas during

the waking period they range from 0.5 to 1. For a global

description of the long-range correlation structure in long-

term HRV recordings, both methods contain similar infor-

mation. However, selective adaptive ARFIMA estimates

of long memory are based on short segments (average seg-

ments length 1480 beats in (c) and 1222 in (f) for ARFIMA

vs L = 4096 in (b) and (e) for DFA). Therefore, the graphs

indicate that ARFIMA modelling can be advantageous for

a better description of long memory, namely during the

transient periods, as the sleeping and waking times.

The results for the age groups of young and old are sum-

marised in Figure 2 and Table 1. It is found that long-range

correlation increases with age, both during sleeping and

waking periods. This is consistent with previous results

reported in literature concerning the value of global scal-

ing exponent calculated with DFA [6]. However, selective

adaptive ARFIMA estimates of long memory are based on

short segments (average segments length 1243 beats for

ARFIMA vs L = 4096 for DFA). Moreover, ARFIMA

modelling allows long memory estimates from fixed length

short segments of 512 beats, Table 1. The global results of

this segmentation is similar to the results of the DFA com-

bined with segmentation (L = 4096 beats) and selective

adaptive ARFIMA modelling.

Table 1. α−0.5 and d̂ for two groups of young (7 subjects)

and old (10 subjects), during the 24 hour records and the

sleeping and waking periods. For each case the average

estimates ± standard deviations are presented.

Methods Periods Young Old

DFA, α − 0.5 24-h 0.44 ± 0.18 0.55 ± 0.19
segmentation with Sleeping 0.31 ± 0.15 0.46 ± 0.20

L = 4096 Waking 0.50 ± 0.16 0.60 ± 0.17

ARFIMA , d̂ 24-h 0.45 ± 0.21 0.54 ± 0.24
select. adapt. segment. Sleeping 0.35 ± 0.20 0.41 ± 0.22

mean(L)= 1243 Waking 0.49 ± 0.20 0.60 ± 0.22

ARFIMA, d̂ 24-h 0.47 ± 0.25 0.55 ± 0.26
segmentation with Sleeping 0.38 ± 0.27 0.43 ± 0.27

L = 512 Waking 0.51 ± 0.23 0.60 ± 0.24

4. Conclusion

DFA combined with segmentation and selective adap-

tive ARFIMA modelling give similar information concern-

ing the global characteristics of long-range correlations:

circadian variation, with different regimes for sleeping and

waking periods and increased values with age. However,

selective adaptive ARFIMA estimates of long memory are

based on shorter segments. Therefore, for a better descrip-

tion of these correlations, ARFIMA models can be advan-

tageous, namely during the transient periods, as the sleep-

ing and waking times. Moreover, ARFIMA modelling al-

lows long memory estimates from fixed length short seg-

ments of 512 beats.
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Figure 2. Average estimates and standard deviations of α− 0.5 and d̂ for each Holter recording during (a) sleeping period

and (b) waking period. The estimated α is obtained using DFA combined with segmentation (L = 4096 beats, ∗) and

d̂ using selective adaptive ARFIMA modelling (◦) and ARFIMA combined with segmentation ( L = 512 beats, ⊳). The

subjects are identified by Y (young) and O (old) and group estimates are presented on the right of each panel.
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