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Abstract 

In this paper, we proposed a kernel difference-

weighted k-nearest neighbor classifier (KDF-WKNN) for 

the diagnosis of cardiac arrhythmia based on the 

standard 12 lead ECG recordings. Different from 

classical KNN, KDF-WKNN defines the weighted KNN 

rule as the constrained least-squares optimization of 

sample reconstruction from its neighborhood, and then 

uses the Lagrangian multiplier method to compute the 

weights of different nearest neighbors by introducing the 

kernel Gram matrix G. In arrhythmia analysis, it is 

unavoidable that some attribute values of a person would 

be missing. Thus, this paper further introduces a modified 

PCA method to address this problem. To evaluate the 

performance of KDF-WKNN, Experimental results on the 

UCI cardiac arrhythmia database indicate that, KDF-

WKNN is superior to the nearest neighbor classifier, and 

is very competitive while compared with several state-of-

the-art methods in terms of classification accuracy. 

 

1. Introduction 

Cardiac arrhythmia, disorders of cardiac rhythm, may 

indicate the susceptibility of serious heart disease, stroke 

or sudden cardiac death. Early diagnosis of cardiac 

arrhythmia makes it possible to choose appropriate anti-

arrhythmic drugs, and is thus very important for 

improving arrhythmia therapy.  

Electrocardiogram records the electronic activities of 

the heart, and has been widely adapted for diagnosing 

cardiac arrhythmia. By far, a number of signal processing 

[1], pattern recognition [2, 3], and machine learning [4] 

methods had been proposed. The publications of several 

generally available arrhythmia datasets also played an 

important role in stimulating research on cardiac 

arrhythmia diagnosis [5, 6]. 

In this paper, we proposed a novel pattern recognition 

approach, kernel difference-weighted k-nearest neighbor 

classifier KDF-KNN, for the diagnosis of cardiac 

arrhythmia based on the ECG recordings. The proposed 

method first defines the weighted KNN rule as the 

constrained least-squares optimization of sample 

reconstruction from its neighborhood, and we then use 

the Lagrangian multiplier method to seek a simple and 

efficient solution to compute the weights of different 

nearest neighbors by introducing the Gram matrix G.  

Taking into account the nonlinear structure information, 

we further extend difference-weighted KNN to its kernel 

version, Kernel difference-weighted k-nearest neighbor 

(KDF-KNN), by defining the kernel distance and the 

kernel Gram matrix. KDF-KNN weighs the nearest 

neighbors by using both the norm and correlation of the 

differences between the unclassified sample and its 

nearest neighbors. Thus KDF-WKNN is expected to 

achieve better classification performance than KNN. 

In arrhythmia analysis, it is the unavoidable that some 

attribute values of a person would be missing. Thus, this 

paper further introduces a modified KDF-KNN method to 

address this problem. To evaluate the performance of 

KDF-WKNN, we use the UCI cardiac arrhythmia 

database which contains 452 instances with 245 normal 

and 207 arrhythmia (15 subclasses) instances. Our 

experimental results indicate that KDF-WKNN is 

superior to the original KNN and distance-weighted KNN, 

and is very competitive while compared with Naïve 

Bayesian classifier, KNN, and VFI5 in terms of 

classification accuracy. 

2. Methods 

2.1. Description of data set 

The Cardiac Arrhythmia Database from the UCI 

Machine Learning Repository is used [7]. This data set 

contains 452 instances of samples from 16 classes. The 

first class is “Normal”, and the other 15 classes are 15 

kinds of arrhythmia. For each sample, there are 279 

attributes, where the first four, age, sex, height, and 

weight, are the general description of the participant, and 

the other 276 attributes are extracted from the standard 12 

lead ECG recordings. For the details of the data set, 

please refer to [4,6]. 

There are two significant characteristics which should 

be noted for the UCI cardiac arrhythmia database. First, 
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the distribution of class labels is imbalanced. For the 

“Normal” class, here are 245 instances of samples. For 

three kinds of cardiac arrhythmia class (the first, second, 

and third degree AtrioVentricular block), there is none 

instance of sample. Second, there are several missing 

attribute values (about 0.33%). 

2.2. KDF-WKNN 

Let {(x1, y1), ···, (xm, ym)} be a training set, where xi is 

the ith training sample, and yi is the corresponding class 

label. Given an unclassified sample x, a distance metric is 

first used to obtain the first k nearest neighbors 

1{ , , }NN NN

kx xA  and their corresponding class labels 

1{ , , }NN NN

ky yA , 1{ , , }NN

i Cy ω ω∈ A . Sample-weighted KNN 

classifier is then operated for classification by running the 

following two steps: 

(1) Assign each nearest neighbor 
NN

ix  a weight wi using 

a weight algorithm; 

(2) Assign the sample x a class label 
maxjω  using the 

following rule: 

max
arg min( )

NNj
i j

j i

y

w
ω ω

ω
=

= ∑ .                                       (1) 

In the following, we introduce a kernel difference-

weighted k-nearest neighbors (KDF-WKNN) classifier to 

assign the appropriate weights on nearest neighbors [7]. 

Given two samples x and x′, a kernel distance in the 

feature space could be defined by introducing the kernel 

function k(x, x′)=(f(x)·f(x′)), 
2

( , ) ( ) ( ) k( , ) 2k( , ) k( , )d ′ ′ ′ ′ ′= Φ − Φ = − +x x x x x x x x x x .             (2) 

Two popular kernel functions are radial basis function 

(RBF) kernel k(x, x′)=exp(-||x-x′||2/2) and polynomial 

kernel k(x, x′)=(1+ x·x′)d. 

After the definition of the kernel distance, we define 

the weight assignment as a constrained optimization 

problem of sample reconstruction from its neighborhood: 

Problem. The weights of the nearest neighbors w=[w1, ···, 

wk]
T is defined as a vector corresponding to the 

constrained optimal reconstruction of ( )Φ x  using 

1[ ( ), , ( )]NN NN

k= Φ ΦX x xA , 

21
arg min ( )

2
= Φ −

w

w x Xw  

s. t. 1i

i

w =∑ .                                                               (3) 

Obviously, the objective of the constrained least-

squares optimization problem is a quadratic function 

while the constraint is a linear, thus is formulated as a 

quadratic programming (QP) problem. We then use the 

Lagrangian multiplier method to seek a simple and 

efficient solution to this QP problem. Let 

1[ ( ) ( ), , ( ) ( )]NN NN T

k= Φ − Φ Φ − ΦD x x x xA . The optimization 

problem can be rewritten as 

1
arg min

2

s.t. 1

T T

i

i

w

=

=∑
w

w w DD w

.                                                (4) 

From Eq. (4), the optimal weights w are only 

dependent on the difference and its k nearest neighbors, 

1{ ( ) ( ), , ( ) ( )}NN NN

kΦ − Φ Φ − Φx x x xA . Thus we name our 

method rule as kernel difference-weighted KNN. 

The Lagrangian function for the constrained 

optimization problem is 

1
( , ) ( 1)

2

T T T

k
L λ λ= − −w w DD w w 1 ,                            (5) 

where 1k is a k×1 vector with each element equal to 1. Let 

the kernel Gram matrix Gk
 = DD

T, and ∇w L(w, λ) = 0, 

∇λ L(w, λ) = 0. We can derive an efficient and 

numerically stable approach to compute the weights w. 

This approach first solves the system of linear equations 

0 k=Gw 1 ,                                                                       (6) 

and then rescales the weights using 

0 0/( )T

k=w w w 1 .                                                            (7) 

Actually, the kernel Gram matrix Gk is constructed by 

defining the element k

ijg  of the kernel gram matrix Gk as 

k (( ( ) ( )) ( ( ) ( )))NN NN

ij i jg = Φ − Φ ⋅ Φ − Φx x x x .                    (8) 

Using the kernel trick, 
k

ijg  can be calculated explicitly 

k k( , ) k( , ) k( , ) k( , )NN NN NN NN

ij i j i jg = − − +x x x x x x x x .             (9) 

We can further derive a more compact expression of the 

kernel matrix Gk, 
k k( , ) T T

kk k c c k
= + − −G K 1 x x 1 k k 1 ,                              (10) 

where K is a k×k Gram matrix with the element 

=k( , )NN NN

ij i jk x x , 1kk is a k×k matrix with each element 

equal to 1, 1k is a k×1 vector with each element equal to 1, 

kc is a k×1 vector with the ith element equal to k( , )NN

ix x . 

In some cases, the inverse of the matrix G is not 

unique if the matrix G is singular (e.g., the number of 

nearest neighbors, k > N, the dimension of the sample). 

To avoid this case, we adopt a regularization method by 

adding a small multiple of the identity matrix, 

tr( ) /k k k kη= +G G G ,                                                 (11) 

where tr(G) denotes the trace of the matrix G, and η = 

10-0~10-3 is the regularization parameter. DF-WKNN can 

utilize the correlation of the samples. 

Finally, we briefly summary the main steps of KDF-

WKNN. Given an unclassified sample x, KDF-WKNN 

first obtains the first k nearest neighbors 
1{ , , }NN NN

kx xA  and 

their corresponding class labels 
1{ , , }NN NN

ky yA , and then 

254



 

 

calculates the kernel Gram matrix Gk. The weights w of k 

nearest neighbors are then determined by solving the 

system of linear equations k k[ tr( ) / ] kkη+ =G G w 1 . 

2.3. Addressing the missing attribute 

values 

In this subsection, we presented a modified principal 

component analysis (PCA) approach to cope with the 

missing attribute values problem. Let 1 2{ , , , }N=X x x xA  

be a training set with N samples, where sample 
(1) ( )[ , , ]d T

j j j=x x xA  is a d-dimensional vector. The total 

covariance matrix St of classical PCA is then defined as 

1 1

1 1
( )( )

N N
T T T

t j j j j

j jN N= =

= − − = −∑ ∑S x x x x x x xx ,         (12) 

where (1) ( )[ , , ]d Tx x=x A  is the mean vector of all training 

images. If there are missing attribute values for some 

instances of samples, we introduce a new variable ( )i

jz  to 

denote whether the attribute value ( )i

jx  is missing, 

( )

( ) 0,     

1,                      

i

i j

j

if x is missing
z

else


= 


.                                        (13) 

With the variable ( )i

jz , the mean vector is redefined as 

( ) ( ) ( )1 N
i i i

j j

j

x x z
N

= ∑ .                                                           (14) 

Similarly, the (k,l)th element of the total scatter matrix St 

can be calculated by 

( ) ( ) ( ) ( ) ( ) ( )

1

1
( , )

N
k l k l k l

t j j j j

j

k l x x z z x x
N =

= −∑S .                        (15) 

The PCA projector 
PCA1 2[ , , , ]pca dϕ ϕ ϕ=T A  can be 

obtained by calculating the eigenvalues and vectors of the 

total scatter matrix St, where kϕ  is the kth eigenvector 

corresponding to the kth largest eigenvalue of St, and dPCA 

denotes the PCA dimension. 

After obtaining the PCA projector, we can use it to 

cope with the missing attribute values. Given a sample x, 

the classical PCA projection method calculates the 

feature vector y by 
T=y W x ,                                                                      (16) 

The feature vector y can also be calculated by minimizing 

the 2-norm objective function 

2 2

1 2
1

( ) ( )
d

i i

i

J x
=

= − = −∑y x Wy W y ,                            (17) 

where Wi is the ith row of W. From Eq. (17), the feature 

vector y corresponds to 

1
( )

2 2 0T TJ∂
= − =

∂

y
W Wy W x

y
,                                   (18) 

W is a set of orthogonal basis, WT
W=Id, where denotes a 

d×d identity matrix. It is simple to see that y=W
T
x. 

If there are missing attribute values for the sample x, 

the objective function in Eq. (17) should be modified to 

2 2

1

( ) ( )
d

i i i

i

J z x
=

= −∑y W y .                                             (19) 

The feature vector y is then calculated by 

1 1

( )
2 2 0

d d
T T

i i i i i i

i i

J
z z x

= =

∂
= − =

∂
∑ ∑y

W W y W
y

, 

1

1

d d
T T

i i i i i i

i i

z z x

−

=

 
=  
 
∑ ∑y W W W .                                   (20) 

Using feature vector y, the reconstructed sample ′x  is  

′ =x Wy .                                                                       (21) 

Using the reconstructed sample ′x , we use the 

following strategy to recovery the missing attribute 

values. If the missing attribute is a real variable, we use 

the reconstructed value to represent it. If the missing 

attribute is a binary variable, we use the rounding 

operation on the reconstructed value to recovery the 

missing attribute. 

3. Experimental results 

In our experiments, we randomly split the UCI cardiac 

arrhythmia database into 10 folds, and use a 10-fold cross 

validation (CV) method to determine the classification 

accuracy. To reduce bias in evaluating the performance, 

we calculate the average of the classification accuracy of 

the 10 runs of 10-fold CV. 

Table 1 Classification accuracy of five methods 

Method
NN 

[6] 

NB 

[6] 

VF15 

[6] 

VF15-

FW [6] 

KDF-

WKNN 

Accuracy 

(%) 
53 50 62 68 70.66 

Table 1 lists the classification accuracy of five 

methods, nearest neighbor (NN), naïve Bayesian 

classifier (NB), VF15, feature weighted VF15 (VF15-

FW), and KDF-WKNN. The classification accuracy of 

KDF-WKNN is 70.66, which is higher than that of the 

other four methods. 

To further discuss the performance of the proposed 

cardiac arrhythmia diagnosis method, we also provide the 

confusion matrix of KDF-WKNN, as shown in Table 2. 

As stated in Section 2.1, there is none instance of sample 

for class 11, 12 and 13, and thus the listed confusion 

matrix is a 13×13 matrix. From the confusion matrix, 

KDF-WKNN is effective to distinguish “normal”, “Old 

Anterior Myocardial Infarction”, “Left bundle branch 

block”, and “Right bundle branch block”. But for the 

other nine classes of cardiac arrhythmia, more samples 

and further investigation would be required. 
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Table 2 Confusion matrix of KDF-WKNN 

 01 02 03 04 05 06 07 08 09 10 14 15 16 

01 235 8 0 0 0 0 0 0 0 2 0 0 0 

02 22 21 0 0 0 0 0 0 0 0 0 1 0 

03 0 3 12 0 0 0 0 0 0 0 0 0 0 

04 7 1 0 7 0 0 0 0 0 0 0 0 0 

05 9 0 0 0 2 0 0 0 0 2 0 0 0 

06 23 0 0 0 0 1 0 0 0 1 0 0 0 

07 2 0 1 0 0 0 0 0 0 0 0 0 0 

08 2 0 0 0 0 0 0 0 0 0 0 0 0 

09 0 0 1 0 0 0 0 0 8 0 0 0 0 

10 15 0 1 0 0 0 0 0 0 34 0 0 0 

14 2 1 0 0 0 0 0 0 0 0 0 0 1 

15 1 2 0 0 0 0 0 0 0 0 0 2 0 

16 18 0 1 0 0 0 0 0 0 2 0 1 0 

 

4. Conclusions 

In this paper, we proposed a kernel difference-

weighted classifier (KDF-WKNN) for the diagnosis of 

cardiac arrhythmia from standard 12 lead ECG 

recordings. Our Experimental results on the UCI cardiac 

arrhythmia database show that KDF-WKNN outperforms 

NN, NB and VF15 in terms of classification accuracy. 
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