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Abstract

Quantitative PET imaging requires a dynamic scan in
order to measure the arterial input function and the tissue
time-activity curves. By combining these two curves with
adequate mathematical models it is possible to obtain
useful physiological information such as the metabolic
rate, perfusion, receptors density etc. Cluster Analysis
(CA) allows to group pixels having the same kinetic. In
this work the performance of two clustering algorithms
were assessed. The user must supply a set of images
acquired at different time points and the number of
clusters. The choice of the correct number of clusters was
performed by using a parsimony criteria. In order to test
the CA method real dynamic small animal PET data were
acquired. Image derived arterial input function and
myocardial FDG uptake were measured. Results showed
that CA allow us to obtain accurate tissue time activity
curves without the need of manual region on interest
delineation.

1. Introduction

Positron emission tomography (PET) is an imaging
technique that allows us to obtain in vivo measurement of
useful physiological parameters such as perfusion,
glucose metabolic rate, receptors density etc. Quantitative
measurements can be obtained by combining the arterial
input function and tissue time activity curves (TAC) with
adequate mathematical models [1-3].

In order to obtain the arterial input function and the
tissue time activity curves region of interest (ROI) are
drawn on the left ventricle and the organ of interest. This
approach is time consuming and operator dependent. In
addition, ROI drawing can be difficult when applied to
small structures, as in small animal PET studies.

Cluster analysis (CA) is a multivariate data analysis
technique that provides an automated ROI delineation
method [4-6]. The main goal of CA is to split a large data
set into a smaller number of clusters, such that points
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belonging to the same cluster have similar characteristics.
If we assume that dynamic PET data can be represented
by a finite number of kinetics and that every point
belonging to the same tissue has the same kinetic, CA
permits to group automatically pixels with the same
kinetic.

In this work we chose to consider two different
clustering algorithms: K-means and Fuzzy C-means.
Both are iterative procedures that minimize the distance
between data set objects and segment the image into a
fixed number of clusters. K-means algorithm creates a
small number of clusters that are mutually exclusive and
exhaustive, so that objects into the same cluster are
similar to each other while objects of different clusters
are dissimilar. Instead, Fuzzy logic defines a membership
degree for every point to every cluster [7, 8].

In this study, we apply CA to segment automatically
dynamic rat cardiac PET images obtained using
#fluorine-fluoro-2-deoxy-D-glucose (FDG). This
procedure allow us to extract the arterial input function
and the myocardium time activity curves in order to
obtain for example in vivo measurement of the
myocardium glucose metabolic rate.

2. Methods

2.1. Cluster analysis

A clustering algorithm analyses a multidimensional
data set and splits data into a small number of distinct
classes, minimizing the distance between points in the
same cluster. Any cluster defines a region in the image
where points have a similar kinetic. Each cluster is
represented by a centroid that can be considered as the
average of TACs in the cluster.

For simplicity we can assume that exist K
tissues and that every tissue has a different kinetic
described by a characteristic curve. PET data can be
stored into a 4-D matrix M, which contains information
about the radiotracer concentration of each voxels at
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different times. As already mentioned in the introduction
we chose to consider two different clustering algorithms:
K-means and Fuzzy C-means. The main goal of each
algorithm is to minimize an objective function D
representing pixel within-cluster distance. Both K-means
and Fuzzy C-means segment the image into a fixed
number of clusters. K-means assigns every point to only
one cluster, while Fuzzy C-means defines a membership
degree u;; for the ith point to the jth cluster. Fuzzy C-
Means seems to be suited in medical image processing
because biological tissues have overlapping grey-scale
intensity distributions due to imperfect image uniformity,
noise and partial volume effects. The objective function
D can be defined as follow:

K N . A K
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where d;; is the distance between the ith tissue TAC
inside the data matrix M and the jth centroid. m € [1, +oo[
is a weighting exponent called the fuzzifier. For the K-
Means algorithm u;; = 0,/ and m = [, while for the

Fuzzy C-Means algorithm 0< u; jS]. and m is

typically equal to 2. The distance d;; can be evaluated
using different metrics: in this study we used K-means
algorithm with Manhattan (¢ = /) and Euclidean (a = 2)
metrics and Fuzzy C-Means with Euclidean metric. All
the code was implemented using Interactive Data
Language (IDL) 6.4.

These two clustering algorithms allow us to
automatically group pixels in an unsupervised manner,
only by trying to consider similarity into data set objects,
without using any kind of information. The user must
define the number of clusters K and to choose initial
cluster centroids in order to start the algorithm. In our
case they are initialized at random. Every point of the
image is iteratively associated to one cluster and the
objective function D is evaluated. The process is repeated
until D converges to a minimum. In this case points are
no more moved from one cluster to another. Since the
original data set belong to a high dimensional space the
convergence to a global minimum is not guaranteed
because of the presence of several local minima in the
solution space. In order to avoid local minima, it is
necessary to restart the algorithm by changing the initial
cluster centroids.

In this work, the clustering was performed
independently on each slice, however the proposed
method could work also on fully 4-D data set. Obviously
the use of the whole volume can be computationally
demanding. In this case in order to reduce the
computational time it is possible to define a threshold or
to perform a preclustering [9].

As mentioned earlier, the user must specify the
number of cluster K in which the algorithm partitions the
data. Usually the correct number of clusters is not known
a priori and typically the elbow criterion is used to
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determine it [10]. This criterion consists into assessing
the validity of clustering by plotting the average Mean-
Squared Error (MSE) across clusters. It is based on the
observation that the within-cluster dispersion, defined as
the sum of distance between any two data points in the
same clusters (see the following equation), is reduced
when number of clusters increases. On the other hand, the
reduction in the within-cluster dispersion usually
decreases significantly when the number of clusters
exceeds the correct number.

K N 2

2. 2.[d,
j=1i=1 "
In this work, we considered that the optimum number for
clustering our data is when the within-cluster dispersion
decreases less than 33%.

1
MSE=—
SE=N

2.2. Rat
acquisition

cardiac dynamic PET image

In order to validate in vivo the CA method described
in section 2.1 a rat cardiac study was performed. More
precisely a dynamic PET scan was performed by
injecting in the tail a 400 g rat with 50 MBq of FDG.
Image acquisition was performed using a dedicated small
animal PET scanner (GE eXplore Vista) [11].

List mode data were acquired using a 100-700 keV
energy window for 60 minutes and then reformatted into
30 sequential frames. No corrections for randoms or
scatter were performed. Image were reconstructed using
an iterative 2D-OSEM algorithm after Fourier (FORE)
rebinnig. The size of the reconstructed dynamic image
(the data matrix M) were equal to: 175x175x61x30 and

the corresponding voxel size was equal to:
0.38x0.38x0.77 mm’.
3. Results

The results of CA performed on a dynamic cardiac
FDG small animal PET scan are shown in figure 1.
Clusters are represented by different grey levels. The
image clearly show that the clustering algorithm groups
correctly regions with similar kinetics.

As one can see the myocardium and left ventricle are
well delineated permitting to extract accurate tissue time
activity curves shown in figures 2 and 3.

For cardiac FDG studies it is possible for example to
use these curves to calculate the glucose metabolic rate
ko using graphical analysis with the Patlak plot as shown
in figure 4 [12].



Fig 1. The image on top show the last frame of a cardiac
dynamic PET scan obtained by injecting 50 MBq of FDG
in a 400 g rat. The bottom image shows the results of
cluster analysis, as one can see the myocardium and left
ventricle are well delineated.
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Fig 2. The plot show the myocardium tissue time
activity curve obtained using the CA.
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Fig 3. The plot show the arterial input function from
the left ventricle cluster centroid shown in figure 1.
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Patlak Plot
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Fig 4. Patlak Plot obtained starting from input function
and myocardium uptake curves shown in figures 2 and 3.
The slope is equal to the glucose metabolic rate £,

4. Discussion and conclusions

In this paper we proposed a CA method for image
segmentation and automatic tissue TAC extraction for
dynamic small animal PET images. The use of hand
drawn ROI is commonly used in the clinical and research
practice to analyse PET datasets. Such approach is
operator dependent and time-consuming. The proposed
method based on CA has the advantage of being more
fast and reliable by reducing the dependence from the
operator and improving at the same time the
reproducibility of the results.

Consequently the physiological parameters obtained
from a dynamic scan like for example the metabolic rate
have lower error with respect to the values calculated
with the manual ROI-based method (data not shown).

The number of clusters K suitable to represent the
considered data set is not known a priori. However we
can reasonably assume that the PET data matrix M
contain a small finite number of clusters (typically less
than 5). By using the elbow criterion, one can determine
the optimum number of clusters for the given dataset. In
the literature there several statistical criteria than can be
used to determine the optimal number of clusters like for
example the Akaike’s Information Criterion [13-15].

One interesting aspect of the CA approach described
in this paper is that the proposed method partitions the
PET data without considering voxel location, but only
valuating temporal informations represented by voxel
TAC.

One of the main limitation of CA is the ability to
distinguish between anatomical structures that have
similar kinetic. The result of CA may also depend on the
chosen algorithm and on the metric used to valuate the
objective function D. In this study, we showed that K-
means Euclidean algorithm is successful in correctly
recognizing different functional areas in real small animal
PET images.
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