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Abstract 

Digital stethoscopes offer new opportunities for 

computerized analysis of heart sounds. Segmentation of 

hearts sounds is a fundamental step in the analyzing 

process. However segmentation of heart sounds recorded 

with handheld stethoscopes in clinical environments is 

often complicated by recording and background noise. A 

Duration-dependent Hidden Markov Model (DHMM) is 

proposed for robust segmentation of heart sounds. The 

DHMM model was developed and tested with heart 

sounds recorded at bedside with a commercially 

available handheld stethoscope. In a population of 60 

patients, the DHMM identified 739 S1 and S2 sounds out 

of 744 which corresponded to a 99.3% sensitivity. There 

were seven incorrectly classified sounds which 

corresponded to a 99.1% positive predictive value. Our 

results suggest that DHMM could be a suitable method 

for segmentation of clinically recorded heart sounds.  

 

 

1. Introduction 
 
Computer-Aided auscultation has the potential to give 

an accurate and objective interpretation of the heart 
sounds, which may improve the early diagnostic process 
of cardiovascular diseases [1]. Several algorithms for 
automatic analysis of heart sounds have been proposed, 
including numerous methods for evaluation of murmurs 
related to heart valve diseases [1, 2, 3], but also methods 
for detection of weak murmurs related to coronary artery 
disease [4,5]. The appearance of electronic stethoscopes 
with digital recording capabilities provides a platform for 
Computer-Aided auscultation in the clinical setting.  

Identification of states in the heart cycle, such as the 
diastolic and systolic periods is fundamental in almost all 
heart sound algorithms. The first heart sound (S1) and the 
second heart sound (S2) are the dominating audible 
reflections, and indicates the beginning of the systole and 
the diastole, respectively.  

Detection of S1 and S2 is complicated by background 

noise, variations in heart rhythm, anatomical variations, 
different recording sites, recording artifacts and 
pathological heart sounds. Segmentation of heart sounds 
recorded with handheld stethoscopes in clinical settings 
are especially challenging due to background noise and 
friction noise between the stethoscope and the skin.  
Direct application of earlier algorithms developed for 
signals recorded with special equipment using fixed 
microphones in a low noise environment [6-10], is 
therefore not reasonable. 

Hidden Markov Models (HMM) have been used for 
segmentation of heart sounds [6, 9, 11-13]. The HMM is 
well suited since it assumes a double stochastic process, 
consisting of an underlying hidden Markov process, in 
our case a heart cycle, which generates an observable 
stochastic output, the heart sound. However the standard 
the Markov model does not model the duration of the 
states explicitly, which is a clear limitation since the 
probability of state transition are highly related to the 
duration of the states.  In the present study we evaluate 

whether a Duration-dependent Hidden Markov Model 
(DHMM) [15] can be used for the segmentation of heart 
sounds recorded with a commercially available handheld 
stethoscope in a clinical environment  

 
2. Methods 

 
2.1.  Data collection and pre-processing 

 
Heart sounds were recorded at bedside in a multiple 

patient room, using an electronic stethoscope (3M 
Littmann E4000, State, USA), from patients referred for 
coronary arterial angiography at the Department of 
Cardiology, Aalborg Hospital. The recording site was 
lateral to the sternum in the 4th intercostal space on the 
left side. Each recording was 8 seconds long, recorded in 
16 bits resolution and sampled with 4000 samples per 
second. The data analysis and processing were conducted 
in Matlab. Recordings from 100 subjects were included 
and divided into a training set (N=40) and a test set 
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(N=60). Patients with arrhythmia, dominating heart valve 
disease or extremely noisy recordings were excluded 
before the test. To allow training and test of the DHMM, 
the recordings where manually segmented into 4 states: 
S1, silent systole (siSys) , S2 and silent diastole (siDia), 
see fig 1. The recordings were band-pass filtered with a 
4th order butterworth filter using corner frequencies at 25 
and 400 Hz. To emphasize the S1 and S2 sounds a 
Homomorphic envelogram was created [11]. Inter-patient 
variation was reduced by normalizing the envelope with 
the 97% percentile value of the envelope.   

 

 
Figure.1. The 4 defined states of the heart cycle.  

 
2.2. Hidden Markov models 

 

The heart cycle is defined as a Markov Model with 4 
states. It is non-ergodic because the states in the heart 
cycle only occur in a fixed order, see Fig 1. Central in the 
standard Markov model are the transition probabilities aij 
which defines the probability of state j at next time 
instances given state i at the current time instance [14].  

 
 欠件倹 = 鶏(圏建+1 = 鯨倹 |圏建 = 鯨件)         (Eq.1) 

 
where qt is the time-state vector defining the states at time 
t, S denotes the individual states as S = {S1, S2 ….,SN}, 

which in the current implantation corresponds to 
S={siSys, siDia, S1, S2}. However, equation 1 is a limited 
model of the cardiac cycle sine the probability of 
transition is not independent of the time spend in a given 
state. For example the probability of transition from 
diastole to S1 is more likely in the end of the diastolic 
period than in the beginning. In the duration dependent 
Markov model the transition probability is supplemented 
with a duration probability distribution for each 
state 喧倹岫穴岻. The conceptual difference between HMM 

and DHMM is illustrated in Fig. 2. 

 
Figure 2. The difference between the HMM and DHMM 
illustrated over a systolic period. A: a systolic period 
bounded by S1 and S2 and contaminated by a noise 
spike. B: Signal envelope. C: the probability that qt is in 
state siSys or state S2 calculated with a forward HMM 
algorithm. The noise spike at 220 ms erroneously makes 
the probability of S2 higher than siSys. D: Simlar to C 
but with the probability calculated using DHMM which 
reduces the effect of the noise spike.       
 

 In the HMM and DHMM the true states: 
Q={q1,q2,….qt} are not known, the Markov model is 
hidden, but an observation sequence O is known. The 
observation is related to the states with the observation 
probability distribution: B={bj(Ot)}, which defines the 
probability that state “j” generates the output Ot. The 
task in the current application is to estimate the state 
sequence which is most likely to produce the given 
observations [14] 

 芸茅 = argmax芸 鶏(芸|頚, 膏)          (Eq. 2) 
 

where Q茅 is the state sequence of all possible state 
sequences which is most likely to produce O. Lambda (Ȝ) 
denotes the model parameters such as the transition 
matrix, observation probability distribution and in the 
case of the DHMM, the duration distribution. Solution of 
equation 2 requires calculation of all combinations of Q, 
which can be shown to correspond to T*NT 
multiplications were T is the number of samples and N 
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the number of states [14]. Therefore the DHMM is 
implemented as a forward algorithm calculating an 
estimated instantaneous probability 絞建岫倹岻 of qt changing 
to a new state at the next time instant [14]. 

(Eq.3) 絞建岫倹岻 = 鶏(頚1 ,頚2 , ┼ . 頚建 ,圏建 = 鯨倹 , 圏建+1 塙 鯨倹 |膏) 
 
Given the duration d and that the previous state was i at 
time t-dj, the forward calculated probability that qt is the 
last time instance in state j is calculated as   

  絞建岫倹, 件, 穴岻 = 絞建伐穴岫件岻 欠件倹  喧倹 (穴) テ 決倹 岫頚建伐嫌岻穴伐1嫌=0      (Eq.4) 
 

where pj(d) is the density distribution of the state 
duration,  絞建伐穴岫件岻 is the probability that the previous  
state i ended at t-d, and aij is the transition probability 
when a transition to a new state occurs. The expression to 
the right of the product sign in (4) is the probability that 
the state j generated the output observed in the period t-d 
to t. From (4) 絞建岫倹岻 is estimated by maximizing 
according to both the duration d and the previous state i 
[15]. 

(Eq 5) 絞建岫倹岻 蛤 max穴 max件塙倹 煩絞建伐穴岫件岻 欠件倹  喧倹 (穴) 敷決倹 岫頚建伐嫌岻穴伐1

嫌=0

晩 
 

The d and i which maximized (Eq. 4) is stored and later 
used in a backtracking algorithm. The q* is found by 
backtracking though the stored values of d and i. See [14, 
15] for additional information about the DHMM. 

 
2.3.  Estimation of parameters 

  
Analysis of the data showed that the inter-subject 

variation in mean and variance of the envelopes was 
small since the envelopes were normalized. The same 
was observed for the distribution of the S1 and S2 
durations. Fixed values of theses parameters were 
therefore estimated from the 40 training recordings.  In 
contrast, the durations of the diastole and systole vary 
significantly from subject to subject. As a consequence, 
the distribution parameters for the durations of diastole 
and systole were estimated individually from each 
subject, using the autocorrelation of the signal envelope, 
where the distance from lag null to the first distinct peaks 
reflects the durations of the systole and diastole. 

 
2.4.  Test  

 
The DHMM performance was compared to a standard 

HMM, with both models using the same envelope as 
input.  The ability of both models to locate S1 and S2 

correctly was measured by sensitivity and positive 
predictive value for the 60 test recordings. A sound was 
correctly located if the center of the detected sound was 
closer than 60 ms to the center of a similarly predefined 
sound. All other detected sounds were defined as false 
positive. Since the models need a short time period in the 
beginning and end of the recordings to overcome end 
effects, the first, the second and the last 1.5 seconds of 
the recordings were excluded from the sensitivity and 
positive predictive value test. A Wilson interval was used 
to define the 95 % confidence intervals (CI) of sensitivity 
and positive predictive values [16]. 

 

Figure 3. Example of segmentation of heart sounds. 
 

3. Results 
 
In the 60 recordings that were included in the test, the 

DHMM model identified 739 S1 and S2 sounds out of 
744 which corresponded to a sensitivity of 99.3% (CI: 
98.4-99.7%) see table 1. In 57 recordings out of 60 
recordings no sounds were missed. 
 
Table 1.  

 
The DHMM misplaced 7 sounds more than 60 ms, 

which corresponds to 99.1% (98.1-99.5%) positive 
predictive value. The standard HMM had a sensitivity of 
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59.5% (CI: 56-63%) and positive predictive value of 55% 
(CI: 51.6-58.4%), which was considerably lower than the 
DHMM. A typical error for the HMM was confusion 
between noise spikes and S1 and S2 sounds. 

 
4. Discussion and conclusions 

 
The present study shows that the DHMM could be a 

well suited method for segmenting heart sounds recorded 
at bedside with a commercially available electronic 
stethoscope. Consistent and reliable segmentation was 
achieved without the use of other signals as the ECG. A 
high precision was obtained even though recordings were 
contaminated with background noise and noise from the 
recording process such as friction noise. The DHMM 
outperformed the HMM, indicating that the DHMM used 
considerable information about the duration distribution, 
which was included in the DHMM.  Previous studies 
applying the HMM have obtained considerably better 
results than 59.5% sensitivity, but results obtained with 
fixed microphones in a low noise environment are not 
directly comparable with the current results. 

The present study was based on a selected population 
of patients referred for coronary arterial angiography, 
making the method suited for acoustical detection of 
coronary artery disease. The current study did not include 
patients with arrhythmias or heart valve disease. 
Arrhythmias may challenge the DHMM algorithm since 
the variation of the diastolic and systolic durations will 
increase. Heart valve disease may cause an amplitude 
increase in the diastolic or systolic periods. Therefore 
estimates of the diastolic and systolic amplitude 
distributions could be erroneous and a more inconsistent 
separation of S1 and S2 from periods with murmurs 
would be expected. Further adaption and tests in patients 
with arrhythmias or heart valve disease, is needed.  

The current method is an important step in the 
development of methods for computer-aided auscultation 
with electronic stethoscopes in a clinical setting. 
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