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Abstract

The editing of heart rate variability (HRV) sequences

is largely employed in presence of biological (ectopies, ar-

rhythmias) and technical artifacts. Little is know about the

effects of these corrections on the estimation of the long-

term scaling exponents, especially for long artifacts. We

therefore investigated the robustness of three popular scal-

ing exponent estimators (DFA, α-slope and Dispersional

Analysis) with an increasing number of missing RR sam-

ples. We tested three editing methods: (i) substitution with

local mean value, (ii) linear interpolation and (iii) dele-

tion. Starting from long uncorrupted (> 10000 points) NN

series, we artificially inserted artifacts. We then evaluated

the effect of the editing methods on the estimation of the

scaling exponents. As a reference, the same computation

was performed simply removing an equivalent number of

points at the extreme of the series. The simulations suggest

a negligible effect of the corrections, at least as long as the

number of points edited is relatively small.

1. Introduction

Long term analysis of Heart Rate Variability (HRV)

obtained from 24-hour ambulatory ECG recordings was

shown to provide prognostic information, in particular for

post-infarction risk stratification [1, 2]. Today, the litera-

ture seems to suggest that the usage of metrics describing

the long-memory characteristics of the heart rate might be

mature. Still a few related issues need to be investigated.

In an acquisition process lasting many hours, move-

ments, sweating or electrodes detachments often corrupt

the ECG signal and may introduce gaps in the RR se-

quences. Furthermore ventricular and supraventricular ec-

topic beats generate disturbances which need to be re-

moved to study heart rate variability and infer conclusions

on the autonomic nervous system activation. When the fo-

cus is on short-term variability, the first problem is usu-

ally avoided by simply selecting intervals free of missing

beats; the second one is routinely treated with linear inter-

polation as long as the number of ectopies is small. But

in dealing with 24-hours recordings, gaps a few minutes

long can only be avoided by excluding completely the cor-

rupted ECG from the study unless editing techniques are

employed to replace the missing intervals.

While the wealth of studies on time series correction

for the subsequent application of linear parameters is large

[3–5], when considering long-term scaling parameters, the

impact of corrections is still debated. Chen et al. [6] tried

to address the issue applying a technique called ”detrended

fluctuation analysis” (DFA) to fractional Brownian motion

(a signal theoretically known to exhibit a long-term scal-

ing behavior) and reported that in most cases randomly re-

moving segments of signal did no significantly changed the

value of the estimated scaling parameters. Peltola et al. [7]

found that, with respect to DFA’s long-term scaling expo-

nents, deletion and local interpolation of premature beats

were equivalent for an amount of corrections < 5% on

8000 points long NN series. Similarly Salo et al. [4] work-

ing on RR Holter series found that up to 5% of the data

could be deleted without a significant error on long term

power-spectral components. Finally, a larger pool of non-

linear indexes was consider by Tarkiainen et al. [8] who

analyzed the effects of editing ectopic beats on 40 minutes

recordings and called for standardized editing practices.

In this paper we tested the consistency of popular esti-

mators, which are typically employed to characterize by

mean of a scaling exponent the long memory behavior of

HRV, when gaps and artifacts are taken into account. In

particular, with respect to previous works [4, 8], which fo-

cused on the correction of ectopic beats, our interest is ex-

tended also to evaluate the feasibility of long-term scaling

estimations in presence of larger gaps of unavailable mea-

surements. The effects of three common RR editing tech-

niques will be investigated.

2. Methods

Dataset. We analyzed 68 high quality Holter recordings.

All recordings had at least 15.6h of ECG data and the aver-

age duration was 22.5 ± 1.6h. The population age ranged
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Figure 1. Probability density function of the runs of con-

secutive intervals which were marked as artifacts or ec-

topic. The function was estimated from the anomalous

beats contained in 68 Holter recordings.

from 20 to 90 years and included normal subjects. A more

detailed description of the population can be found in [9].

Data Analysis. The Holter recordings were analyzed us-

ing an automatic labeling software. Under the supervision

of a trained physician, the labeling procedure produced an

annotated RR series for each recording. Among the RR se-

ries, we firstly selected the 20 longest segments fulfilling

the following two criteria: i) the series were composed of

NN intervals only; ii) each NN interval didn’t change more

than 20% with respect to the preceding NN interval [10].

The length of the selected sequences was 19213 ± 7017
beats, with range [11286 − 34774]. These sequences were

the longest NN sequences which were also free of gaps and

ectopic beats. They will be referred to as reference series

in the following; they came from 20 different subjects.

The sample histogram of the number of consecutive not

normal beats (which were found in 68 Holter recordings)

was used to estimate the probability density function (pdf)

of the length of the gaps encountered in our dataset. The

function is shown in Figure 1. The figure of not normal

beats ranged from a minimum of 0.05% to a maximum of

12.7%, being the latter most of an exceptional case than

the rule (median: 0.62%, 25 percentile: 0.30%, 75 per-

centile: 1.92%). As expected, most of the gaps involve

two consecutive RR intervals (i.e. ectopic beat and sub-

sequent compensatory longer interbeat interval) but longer

runs involving tens of beats may also occurs. Please note

that the tail of the distribution is quite ”heavy” and about

0.9% of the runs of not normal beats are longer than 20.

In each of the 20 reference series several NN intervals

were marked as not normal (thus generating ”artificial”

gaps). The number of such interval ranged from a min-

imum of 0.5% of the length of the series to a maximum

of 5%, covering an extent of practical interest. While the

lengths of the gaps were drawn from the pdf in Figure 1,

their locations were uniformly distributed over the series,
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Figure 2. Relative errors on the estimate of the spectral-

slope α. The values of α computed on the reference series

were compared with the values obtained after marking as

anomalous a portion of the interval and a subsequent edit-

ing performed with: i) substitution with local mean value

(M, triangle); ii) linear interpolation (LI, circle) and iii)

deletion (D, star). For each of the 20 reference series and

for each percentage of removed intervals, the procedure

was repeated 20 times to reach statistical consistency. The

values relative to each subject were then averaged and the

mean value and the standard deviation collected. Finally,

the values reported in the plot are the average of the mean

values and standard deviations across the 20 different ref-

erence series. The light gray area was instead obtain with

the same process but removing intervals from the head and

the tail of the series and no subsequent editing. It gives a

rough estimation of the standard deviation of the slope of

the spectrum.

ensuring that they did not overlap.

The not normal interval in the reference series were then

edited as if they were actual anomalous beats. Three edit-

ing techniques, routinely employed when computing linear

indexes, were considered. We briefly sketch them here.

i) Linear interpolation (LI): the number of NN intervals

to insert was computed [3] as

B =
2

∑i+M

j=i RRj

RRi−1 − RRi+M+1

, (1)

where the intervals RRj with j ∈ [1, M ] are the ones

marked as anomalous. A run of B intervals was then in-

serted; their lengths were computed with linear interpola-

tion using RRi−1 and RRi+M+1 as endpoints of the line.

ii) Substitution with local mean value (M): the number B

of intervals to be inserted was computed with equation (1).

The interval length was set by computing the local mean
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Figure 3. Relative errors on the estimates of the detrended

fluctuation analysis (DFA) long-term scaling exponent af-

ter editing of anomalous intervals. See figure 2.

(RRi−1 + RRi+M+1)/2.

iii) Deletion (D): the anomalous intervals were simply ex-

cluded from the series and subsequent beats were shifted

down in the sequence to take their place. The final series

was thus shorter than the unedited one.

The process of marking as anomalous the intervals of the

uncorrupted series with subsequent editing was performed

20 times to reach statistical significance. The scaling ex-

ponents computed on the reference series were compared

each time with the values obtained after the editing proce-

dure.

Estimator of scaling exponents. Three methods and their

correspondent long term scaling parameters were consid-

ered: Detrended Fluctuation Analysis (DFA) [11], the

slope of the spectrum at low frequencies [12], and Dis-

persional Analysis (DA) [13]. The indexes were selected

as the most representatives among those usually employed

in clinical studies. For the reason of brevity, we skip the

definition of the parameters here and refer the reader to

the bibliography. The scales we considered for DFA and

DA were [127, 2048]. The fitting of the spectrum was per-

formed in the range (0, 0.01] cycles per beat. The linearity

of the fit was checked by visual inspection on a sample and

verified with the R2 statistics.

3. Results

The results we obtained are summarized in figure 2

(spectral slope), figure 3 (DFA) and figure 4 (DA). For each

figure, the mean relative error is depicted as a function of

the relative number of missing samples. Standard devia-

tion bars are also superimposed. Each correction method

is reported with a different symbol.
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Figure 4. Relative errors on the estimates of the dispe-

sional analysis (DA) long-term scaling exponent after edit-

ing of anomalous intervals. See figure 2.

A few general observations can be derived from the

analysis of these graphs. The first one is that the deletion

(D) method introduced the larger bias (and standard devia-

tion) in the estimation of the long-term scaling exponents,

while substitution with local mean (M) and linear interpo-

lation (LI) yielded similar results with a slightly smaller

standard deviation for the former. To verify further this as-

pect, for each reference series and for each percentage of

removed intervals, we tested the null hypothesis that the 20
independent estimates obtained were drawn from a normal

distribution with mean the value of the scaling exponent as

computed on the uncorrupted series. At a correction rate

of 5%, the p-values (t-test) were smaller than 0.05% in 13
subjects using D and only in 3 and 2 subjects respectively

using LI and M (power slope). Considering DFA the num-

ber of subjects became 19, 3 and 3 respectively, while for

DA they were 14, 9 and 11. Thus in more than half the

reference series a bias (even if small) was present when

editing with D.

The results did not favor the editing technique D, which

on the contrary was found to have superior performances

when dealing with linear parameters [3]. Unfortunately D

was inherently different due to the fact that the series was

shortened while with the other two editing techniques it re-

mained on average of the same length (e.g. a 5% deletion

in a 30000 interval long series is a reduction of 1500 sam-

ples). To verify if the shortening itself was to be blamed we

also roughly estimated the variability of the estimators at

the different lengths by repeating the same computational

procedure employed for the scaling exponents but remov-

ing samples only on the head or tail of the reference se-

ries. In this case too 20 iterations were taken into account
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to reach statistical significance. The results are reported in

figures 2– 4 with a light gray area which corresponds to the

mean bias values ± the average standard deviations. The

range of values assumed by the estimators was wide and

surely comparable with the values obtained when editing

with D. On the shorter series, the null hypothesis was re-

jected by mean of a t-test in 17 (spectrum slope), 17 (DFA)

and 18 (DA) subjects respectively.

4. Discussion and conclusions

The research compared the effects of three different edit-

ing techniques prior the computation of three widespread

nonlinear indexes on long HRV series. Instead of consid-

ering synthetic signals, the problem of locating a set of

reference series was bypassed selecting portions of Holter

recordings which proved to be free of artifact and ectopic

beats. Such portions are not so common so a large col-

lection of recordings had been necessary. The position and

length of the runs of anomalous beats were selected resem-

bling as much as possible an actual situation by mean of an

estimated pdf of the gaps’ lengths.

The results suggest that the absolute values of the bias

introduced by editing were ≪ 0.5% for M and LI and

< 1% for deletion. While the first two techniques seemed

to perform better than D, once we considered the vari-

ability of the estimators due to slightly shortening the se-

ries, the three methods appeared pretty much equivalent.

In fact, even for series which had only 1% of points less

that the reference ones, the variability of the estimates

were comparable with the one provided by deletion (when

considering the spectrum slope, with 5% of the sample

removed, a bias was statistically present in 17 subjects

against the 13 observed after D).

In fact, it might be speculated that the shortening itself

of the series lead to a larger variability and not to the dis-

ruption of the temporal nonlinear dynamics of the series as

at first it might have been appeared. This might be ratio-

nalized by considering the long scales studied for the com-

putation of the indexes which were typically much larger

than the gaps inserted and edited.

As a final remark we stress that the simulations showed

that the estimation of the three indexes we considered was

quite robust and it was only partially affected by editing.

Insertion of a local mean value appears to be slightly su-

perior to the other two techniques so it might become the

preferential method in setting up an experimental protocol.

Nevertheless, results constructed with other editing meth-

ods, as long as the number of edited points is smaller than

5%, are largely comparable.
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Università degli Studi di Milano

via Bramante 65, 26013 Crema (CR) Italy

E-mail address: sassi@dti.unimi.it

568


